
This paper is included in the 
Proceedings of the 18th USENIX Symposium on 

Networked Systems Design and Implementation.
April 12–14, 2021

978-1-939133-21-2

Open access to the Proceedings of the 
18th USENIX Symposium on Networked 

Systems Design and Implementation 
is sponsored by

Toward Nearly-Zero-Error Sketching via 
Compressive Sensing

Qun Huang, Peking University and Pengcheng Lab; Siyuan Sheng,  
Institute of Computing Technology, CAS; Xiang Chen, Peking University  

and Pengcheng Lab and Fuzhou University; Yungang Bao,  
Institute of Computing Technology, CAS; Rui Zhang, Yanwei Xu,  

and Gong Zhang, Huawei Theory Department

https://www.usenix.org/conference/nsdi21/presentation/huang



Toward Nearly-Zero-Error Sketching via Compressive Sensing
Qun Huang1,2 Siyuan Sheng3 Xiang Chen1,2,4 Yungang Bao3 Rui Zhang5 Yanwei Xu5 Gong Zhang5

1Peking University 2Pengcheng Lab 3Institute of Computing Technology, CAS
4Fuzhou University 5Huawei Theory Department

Abstract
Sketch algorithms have been extensively studied in the area

of network measurement, given their limited resource usage
and theoretically bounded errors. However, error bounds pro-
vided by existing algorithms remain too coarse-grained: in
practice, only a small number of flows (e.g., heavy hitters)
actually benefit from the bounds, while the remaining flows
still suffer from serious errors. In this paper, we aim to design
a nearly-zero-error sketch that achieves negligible per-flow
error for almost all flows. We base our study on a technique
named compressive sensing. We exploit compressive sensing
in two aspects. First, we incorporate the near-perfect recovery
of compressive sensing to boost sketch accuracy. Second, we
leverage compressive sensing as a novel and uniform method-
ology to analyze various design choices of sketch algorithms.
Guided by the analysis, we propose two sketch algorithms that
seamlessly embrace compressive sensing to reach nearly zero
errors. We implement our algorithms in OpenVSwitch and P4.
Experimental results show that the two algorithms incur less
than 0.1% per-flow error for more than 99.72% flows, while
preserving the resource efficiency of sketch algorithms. The
efficiency demonstrates the power of our new methodology
for sketch analysis and design.

1 Introduction

Sketch algorithms have been widely adopted in flow-level
monitoring. They maintain compact data structures that sacri-
fice a small portion of accuracy to be readily deployable in
commodity network devices. Given their limited overheads
and provable high accuracy, numerous sketch algorithms are
designed to monitor various flow statistics, such as per-flow
counting [49], heavy hitters [19, 25], denial-of-service vic-
tims [26,84] and traffic distributions [46]. These flow statistics
form essential building blocks for network management.

Despite the sound theoretical bounds on the errors, exist-
ing sketch algorithms remain far from perfect for providing
comprehensive guarantees for all flows. Ideally, it is expected
to monitor every flow with minimum errors, which empowers
various fine-grained network management operations such as
responsive diagnosis [17, 51, 67] and precise failure localiza-
tion [3, 50]. However, the bounds in existing algorithms are
designed for specific traffic statistics such as heavy hitters or
flow distributions. They are too coarse-grained when applied
to all flows. As a result, only a small portion of flows actu-

ally benefit from the provable error bounds. For instance, for
byte counting, many sketch algorithms guarantee an upper
bound of per-flow error. Heavy hitters whose size is much
larger than the bound can certainly achieve high accuracy as
the maximum possible error is limited compared to their size.
Nonetheless, such a bound is still unacceptable for most small
flows that still suffer from poor accuracy.

In this paper, our goal is to explore nearly-zero-error (NZE)
per-flow monitoring. We aim to achieve a negligibly small
error (e.g., >99.99% flows are reported, and the estimated
size of any reported flow has a <0.1% relative error compared
to the true size). We base our study on a signal processing
technique named compressive sensing. Our key insight is that:
(1) compressive sensing provides near-perfect signal recov-
ery with limited resources, which inspires us to apply it to
flow monitoring; (2) compressive sensing is built on various
matrix properties such as sparsity, which provides a power-
ful tool to study sketch algorithms, given that most sketch
algorithms exhibit the same mathematical form as compres-
sive sensing [21]. Even though some telemetry solutions also
adopt compressive sensing [7, 16, 21, 35, 44, 83], our work
addresses the design of NZE sketch, which is never studied.

In particular, we exploit compressive sensing in two lines.
In the first line, we incorporate the near-perfect recovery tech-
nique of compressive sensing by regarding flow statistics as
signals. However, our preliminary experiments show that it is
non-trivial to adopt compressive sensing directly. This moti-
vates the second line of our work that examines the suitability
of compressive sensing for sketch algorithms and then de-
signs new algorithms accordingly. Specifically, we leverage
compressive sensing to propose a novel and uniform method-
ology to study sketch techniques: we formulate various sketch
algorithms in forms of matrices and then quantitatively an-
alyze their suitability to compressive sensing. Thus, instead
of designing from scratch, we use the analysis results as a
guideline for the algorithm design.

In summary, we not only propose new algorithms but also
provide a new methodology to study sketch techniques from
a perspective of compressive sensing. We make the following
contributions:
• We investigate the feasibility of applying compressive sens-

ing to flow monitoring. We evaluate two simple methods
and show that simple utilization either suffers from poor
scalability or fails to reach the expected accuracy level.

• We dissect existing sketch algorithms based on compres-
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sive sensing theory. We formulate each sketch algorithm by
inducing a matrix for it. We examine a fundamental matrix
property namely orthonormality that ensures the correct-
ness of compressive sensing. We find that induced matrices
of existing algorithms fail to be orthonormal.

• We study the common approaches to build sketch algo-
rithms from a perspective of matrix analysis. We analyze
the impact of these approaches on the orthonormality of
their induced matrices. We reveal the limitations of existing
algorithms when combining with compressive sensing.

• We design two new algorithms that efficiently utilize the
common approaches to embrace compressive sensing seam-
lessly. The two algorithms target suitability to compressive
sensing to achieve nearly-zero errors, while prior algorithms
provide only coarse-grained error bounds. Further, their de-
sign choices can be interpreted by matrix analysis, while
existing algorithms are built on statistical analysis or empir-
ical observations on hash conflicts. To our best knowledge,
both the two aspects are never explored before.

• We implement our proposed algorithms atop both Open-
VSwitch [62] and P4 [63]. Our evaluation results demon-
strate that our algorithms achieve less than 0.1% relative
error for more than 99.72% flows, while incurring zero
false negatives and zero false positives, while consuming
limited resources compared to state-of-the-art algorithms.
We release our source code at https://github.com/
N2-Sys/NZE-Sketch.

2 Problem

2.1 Sketch-based Flow Monitoring
We follow the line of approximate flow-level measurement [4,
35,37,49,53,54,80,82]. Flow-level monitoring defines a flow
as a sequence of packets with the same flow ID, and computes
its flow values based on the packet sequence. We focus on
sketch algorithms that outperform sampling in accuracy [49]
and hence have been extensively used in flow monitoring.
A sketch algorithm records information of every packet in a
compact data structure, so as to achieve high accuracy yet be
readily deployed in commodity measurement points.

In a nutshell, a sketch algorithm comprises a collection of
counters. It supports two operations: update and query. The
update operation is performed in the data plane. For each
packet, it selects several counters with hash functions and
updates the selected counters to reflect the changes of flow
values. The query operation is invoked by the control plane.
The control plane periodically collects sketch structures from
each measurement point, and performs the query operation to
extract flow IDs and flow values from the structure.

Sketch algorithms allow a small but bounded accuracy drop
to reduce resource overheads. Specifically, in a sketch algo-
rithm, a counter is typically shared by multiple flows, which in-
evitably incurs some errors due to flow conflicts. Each sketch
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Figure 1: Fractions of flows that reach <10% and <50% per-
flow errors in existing sketch algorithms.

algorithm mitigates the errors with its specific algorithmic
design. Backed by sound mathematical analysis, sketch algo-
rithms usually provide theoretical bounds on the errors.

2.2 Limitation

However, the theoretical guarantees provisioned by existing
sketch algorithms are limited. Existing algorithms are typi-
cally designed to provide guarantees for specific flows (e.g.,
heavy hitters [8, 19, 25, 68] or super-spreaders [84]) and/or
aggregated flow statistics (e.g., cardinality [28] or traffic distri-
bution [46]). With regard to the specific scope, it is sufficient
for a sketch algorithm to mitigate the overall hash conflicts
only because bounding per-flow error is not a primary goal.
Nonetheless, when extending an algorithm to the entire net-
work traffic, the derived bounds are too coarse-grained to
work for all flows. This leads to a considerable gap between
theoretical analysis and practical results: only a small portion
of flows actually benefit from the theoretical bounds, while
the remaining flows still exhibit poor accuracy.

We consider an example of CountMin [20] to illustrate
it. A CountMin sketch consists of r rows, each of which
has w counters. When applying it to count per-flow bytes, it
guarantees that the per-flow counting error is at most 2U

w with
a high probability 1− 1

2r , where U is the total byte count of
all flows. Now we consider an interval with U =10 GB traffic,
and configure w = 105 and a sufficiently large r such that the
probability 1− 1

2r is close to one. In this case, the error bound
is around 210 KB. For extremely large flows, such a bound
guarantees a small error (e.g., <2% relative error for a flow of
10 MB). However, the error is awfully huge for small flows
whose byte counts are below the bound. Given the heavy-
tailed traffic distribution, most flows are small. Thus, most
flows suffer from low accuracy due to the loose bound.

We justify this observation via trace-driven experiments.
We consider 11 sketch algorithms for per-flow packet count-
ing: Counting Bloom Filter (CBF) [27], CountMin (CM) [20],
CountSketch (CS) [15], Deltoid (DT) [19], ElasticSketch
(ES) [80], FlowRadar (FR) [49], NitroSketch (NS) [53], RevS-
ketch (RS) [68], SeqHash (SH) [8], SketchLearn (SL) [37],
and UnivMon (UM) [54]. We use Caida [9] traces and parti-
tion our traces in two 2-second intervals where each interval
contains 100 K flows. We employ two configurations for each
algorithm: one with 10 MB memory that is around the maxi-
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mum available memory in commodity switches [43, 56], and
the other with 100 MB that indicates an ideal scenario that
has plenty of memory resources. We set parameters as sug-
gested in the original papers. Figure 1 presents the fractions
of flows whose per-flow error is below 10% and 50%. With
10 MB, less than half flows can reach a per-flow error below
10% in most algorithms. The low accuracy is caused by the
serious hash conflicts in these sketches. With 100 MB, the
overall accuracy is improved. However, such huge memory
consumption is not affordable in commodity switches.

3 Overview

Goals. We explore the methodology to design NZE sketch
algorithms. Specifically, we expect that: (1) flow IDs are
extracted with a negligible error probability (e.g., both false
positive rate and false negative rate are below 0.01%), and (2)
per-flow error is small (e.g., <0.1%) for almost all (e.g., >99%)
flows. At the same time, we also aim to limit the resource
usage such that the algorithms can be readily deployed.

The NZE monitoring forms the basis for various flow statis-
tics, such as flow cardinality [28], super-spreaders and DDoS
victims [30, 86], heavy hitters/changes [45], flow distribu-
tions [46], and entropy [34]. For each type of statistics, a lot
of specific algorithms have been proposed. However, to our
best knowledge, none of existing algorithms provide com-
prehensive and strict accuracy guarantees for all flows. Prior
studies advocate that: (1) it is sufficient to address large flows,
and (2) approximate monitoring is acceptable. Nevertheless,
NZE monitoring for even small flows greatly benefits net-
work management. For example, single-packet TCP flows
typically indicate unsuccessful connection attempts, caused
by DDoS attacks, service crashes, or software bugs. Without
accurate monitoring for small flows, it is difficult to rapidly re-
act to such events. On the other hand, NZE monitoring allows
administrators to deal with the reported anomalies without
concerns on false alarms or undetected events.

Key idea. Our study addresses three questions. (1) Is NZE
monitoring theoretically feasible? (2) What are the key factors
to achieve NZE monitoring? (3) How do the key factors be
efficiently realized in practice?

To answer these questions, we base our work on compres-
sive sensing [11–13, 24]. Compressive sensing is a signal
processing technique that acquires high-dimensional signals
with limited resources. Classical compressive sensing has two
procedures. The sensing procedure records a signal by multi-
plying the signal with a matrix, while the recovery procedure
reconstructs the signal with an optimization-based approach.
We exploit compressive sensing in two aspects:
• We aim to incorporate the optimization-based recovery of

compressive sensing to achieve near-zero errors. This is
motivated by the sound theoretical guarantees provisioned
by compressive sensing on its overheads and correctness.

Root Cause Analysis (§5) Feasibility Analysis (§4)
Classical Sensing

Sketch-based Sensing

Common Approach Analysis (§6)

Algorithm Design (§7)
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Figure 2: Workflow.

It has been demonstrated that the optimization-based ap-
proach can recover signals nearly perfectly in many areas
such as image compression [11, 12]. Thus, similar results
are expected if we regard flow values as signals.

• We also leverage compressive sensing to guide the design of
NZE sketch. Here, compressive sensing serves as a general
framework to study various sketch algorithms. In particular,
compressive sensing exhibits the same mathematical form
as sketch algorithms: prior works [18, 21, 55] show that
sketch algorithms can be viewed as variants of compressive
sensing. Even though each sketch algorithm exhibits its
unique design that is quite different from classical compres-
sive sensing, it can be formulated by a matrix (§4.3) and
analyzed via matrix analysis.

Assumptions. Our study makes two assumptions. First, net-
work traffic is sparse. By sparsity, we mean that even though
there are enormous possible flows (e.g., 264 possible 2-tuple
flows), the number of active flows is much smaller. This
assumption has been justified in many measurement stud-
ies [5,66] and utilized in various recent works [35,83]. Second,
we assume that a sketch algorithm contains a linear part in
which each counter is updated linearly by a packet. Previous
studies [18, 21] show that basic sketch algorithms, including
CM, CS, and CBF, are linear structures; while we observe that
many other sketches (e.g., UM, FR, ES, and SL) are built atop
these basic sketches. We discuss how to handle the non-linear
portion of a sketch in §4.3.

Workflow. Figure 2 outlines the workflow of our study.
• Feasibility analysis (§4): We investigate the feasibility

of applying compressive sensing to flow monitoring. We
consider two methods. The first method directly adopts
classical compressive sensing, including its sensing and
recovery procedures. The second method employs sketch
algorithms to record per-packet information (referred to
as sketch-based sensing). Then it formulates each sketch
algorithm as a matrix and invokes the optimization-based
recovery of classical compressive sensing. However, we
find that the first method suffers from a scalability problem,
while the second method has very low accuracy. This moti-
vates us to dive into the fundamental theory of compressive
sensing and design new algorithms.

• Root cause analysis (§5): We examine the root cause that
leads to the poor accuracy when combining sketch-based
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Figure 3: Utilization of compressive sensing for network mon-
itoring.

sensing with the optimization-based recovery. Our study
compares the matrices formulated by sketch algorithms
with those in classical compressive sensing. We address a
critical matrix property orthonormality (§1) that ensures the
correctness of classical compressive sensing. Our bench-
mark experiments show that the matrices formulated by
sketch algorithms lack sufficient orthonormality.

• Common approach analysis (§6): We identify common
approaches to improve matrix orthonormality for sketch
algorithms. Even though the approaches are also used in
existing algorithms, we revisit these approaches in a novel
methodology of matrix analysis. We group the approaches
into four classes. For each class, we theoretically analyze
the impact on matrix orthonormality. We also perform
benchmark experiments to validate our analysis. Our analy-
sis points out that the current utilization of these approaches
is not efficient to combine with the optimization-based re-
covery of compressive sensing.

• Algorithm design (§7): We propose two algorithms that
seamlessly combine sketch with the compressive sensing re-
covery. Based on the results of common approach analysis,
we select appropriate approaches and efficiently integrate
them to form the data plane of the two algorithms. Each
design choice can be fully interpreted by matrix analysis.
In the control plane, the two algorithms recover flow IDs
and flow values by solving an optimization problem.

Discussion. Some recent studies have also applied compres-
sive sensing in network measurement [7, 16, 21, 35, 44, 83].
However, they focus on recovering missing values in specific
scenarios such as traffic matrices [16, 83] or network tomog-
raphy [7]. In contrast, we utilize compressive sensing to (i)
comprehensively dissect sketch algorithms, and (ii) guide the
full design of NZE sketch.

Note that there are numerous variants of compressive sens-
ing that reconstruct signals in different manners (e.g., LASSO
[47] or using L0 norm). In this paper, we focus on the original
reconstruction approach that is based on matrix orthonormal-
ity [11, 12], given their simplicity and sound guarantees.

4 Feasibility Analysis

We introduce the fundamental concepts of compressive sens-
ing in §4.1. Then we study two methods that apply compres-
sive sensing to flow monitoring in §4.2 and §4.3, respectively.

4.1 Preliminary
Compressive sensing represents a signal as a signal vector~x
of length n. It includes two procedures to acquire~x.

Sensing procedure. The sensing procedure is responsible for
recording ~x in a lightweight manner. Since the length n is
usually a large number, compressive sensing linearly maps
~x into a measurement vector~y of length m, where m is much
smaller than n. Formally, the mapping can be represented as
an m×n sensing matrix Φ, while~y is computed as:

~y = Φ×~x (1)

Recovery procedure. The recovery procedure is to recon-
struct the signal vector~x with Φ and~y. However, Equation (1)
is an underdetermined system. It includes m linear equa-
tions for the n unknown variables in ~x: the i-th element in
~y (denoted by yi) and the i-row of Φ form a linear equation:
∑

n
j=1 Φi, j · x j = yi. Since the number of variables n is much

larger than the number of equations m, the number of possible
solutions is infinite.

Compressive sensing addresses the underdetermined prob-
lem by introducing some prior knowledge. It assumes that~x
is sparse1. Then compressive sensing formulates an optimiza-
tion problem:

minimize: ‖~x‖1,

subject to: ~y = Φ~x
(2)

Here, compressive sensing chooses to minimize the L1 norm
of ~x because L1 norm penalizes against the lack of sparsity
[11, 12]. Therefore, a sparse vector satisfying Equation (1) is
obtained. Theoretical analysis shows that the solution is close
to the true~x if some specific properties hold in Φ [11–13, 24].
We will study the properties in §5.

Utilization. Figure 3 depicts how to map the concepts of com-
pressive sensing to those in network monitoring. Let n be the
number of possible flows. For each type of flow statistic, all
flow values form a vector~x of length n. An element xi indi-
cates the value of the flow i. A measurement point maintains~y
in its memory. For each packet, it identifies the flowkey i such
that the packet can be considered as a change to ~x denoted
by ∆~x. The measurement point multiplies ∆~x with the matrix
Φ to form the update to ~y (denoted by ∆~y). Then it applies
the update to~y. The control plane collects~y and invokes the
optimization-based recovery in Equation (2) to reconstruct
~x. Note that we do not need to explicitly maintain Φ,~x, ∆~x,
and ∆~y in memory. Instead, we compute their elements on
demand. For example, we compute an element Φk,i when we
update the k-th counter in~y with flow indexed by i.

In practice, network administrators can directly utilize a
classical matrix Φ [12, 75]. They can also propose their own
method and formulate it in the form of Equation (1). We study

1For non-sparse ~x, it needs to be transformed to another sparse vector
first. We omit this case because network traffic exhibits high sparsity (§3).
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the classical methods in §4.2 and formulate sketch algorithms
using compressive sensing in §4.3.

4.2 Method 1: Classical Sensing

Accuracy. We first consider a method that direct utilizes clas-
sical sensing matrix Φ. We evaluate the accuracy of the clas-
sical sensing method via experiments with the same setup as
that in §2.2. We employ four types of commonly used sensing
matrices Φ: (1) Gaussian Matrix (GM) [75], (2) Bernoulli
Matrix (BM) [12], (3) Incoherence Matrix (IM) [12], and (4)
Fourier Matrix (FM) [12]. To reconstruct~x, we leverage two
algorithms: the L1 minimization approach that solves the opti-
mization problem with the simplex method [22], and a greedy
algorithm named Orthogonal Matching Pursuit (OMP) [64].
The four types of sensing matrices and two recovery algo-
rithms produce eight approaches in total. The results show
that all the eight approaches can recover flow IDs and flow
values perfectly: zero false positives, zero false negatives, and
zero per-flow error. Our results show that 400 KB memory is
sufficient to achieve perfect recovery, which is much smaller
than sketch algorithms (§2.2). The detailed accuracy trend
with different memory settings is in Table 3 in Appendix.

Scalability problem. However, the classical sensing method
suffers from a scalability problem. The classical sensing ma-
trices are dense matrices in which all elements are non-zero.
Thus, each packet needs to update m (above 104) counters
in ~y. This is infeasible for commodity devices. In software
switches, updating so many counters fails to keep pace with
packet streams with the slow CPUs. In hardware switches, the
updates far exceed the available computational units. Thus,
classical sensing can only accommodate limited flows.

Note that the scalability problem does not occur in other
compressive sensing applications in which ~x does not vary
(e.g., image compression). In those scenarios,~y is computed
only once using the constant~x.

4.3 Method 2: Sketch-based Sensing

Matrix formulation. Sketch algorithms incur limited per-
packet operations, which addresses the scalability problem
in §4.2. we follow prior studies [18, 21] that regard sketch
as linear mapping and formulate it in the form of ~y = Φ~x.
Let m be the number of linear counters. For~y, we index the
m counters and stack them as a vector~y of length m. For Φ,
we form Φ with m rows and n columns, where each column
represents a flow while each row represents one counter in~y.
Each element Φi, j implies that the counter yi is incremented
by Φi, j if the value x j of flow j changes by one.

Examples. We present an example of CountMin in Figure 4.
We consider four flows, i.e.,~x has its length n=4. We employ
two rows and configure three counters in each row in the
sketch. Hence,~y has length m = 6. In each row, a packet (k,v)

𝑦1
ℎ1(𝑘) = 𝑘 𝑚𝑜𝑑 3ℎ2 𝑘 = (𝑘 + 1) 𝑚𝑜𝑑 3
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1
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1
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y
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Figure 4: Matrix formulation of CountMin.
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Figure 5: Ratio of flows that reach <50% per-flow errors in
sketch-based sensing.

selects one counter with a hash function and increments it
by v. Thus, we have Φi,k = 1 if flow k is hashed to counter
i, and Φi,k = 0 otherwise. For each more flow, we may add
a column to Φ and derive the column elements in the same
method. We present more examples in Appendix.

Nonlinear structures. Not all components in a sketch are
linear mapping. These components cannot be formulated by
matrices. For example, FlowRadar maintains a set of counters
that encode flow IDs via XOR operations [49]. We do not
incorporate such nonlinear components in the optimization
problem when reconstructing~x. Instead, we employ them to
verify the correctness of the reconstructed~x. Specifically, we
recompute these nonlinear structures with the reconstructed
~x and compare them with the original ones. For example, in
FlowRadar, we encode all recovered flow IDs via the same
XOR operations. We compare the new encoded results with
the original XOR results to validate the correctness.

Results. We evaluate the sketch-based sensing method. We
consider the sketch algorithms in §2.2. For each algorithm,
we perform both L1 minimization and OMP for the recovery.
We employ two memory configurations: one with the same
amount of memory as classical sensing, and the other with
10× memory. Figure 5 presents the ratio of flows whose error
is below 50%. We see that even with 10× memory, all algo-
rithms suffer from extremely low accuracy when using the
optimization-based recovery. The results are even worse than
those using their original query operations (see §2.2). The
reason is that the matrices derived from existing sketch algo-
rithms do not exhibit the required properties of compressive
sensing although they exhibit the same form (see 5). This sug-
gests us to explore new methods to boost sketch-based sensing
to embrace compressive sensing, provided by the extensive
study on the accuracy of compressive sensing [11–13, 24].

5 Root Causes

We examine the root cause of the poor accuracy in §4.3. Our
methodology is to examine whether key properties of classical
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Figure 6: RIP of classical and sketch-based sensing.

sensing hold in sketch-based sensing.
Key properties. Compressive sensing guarantees its correct-
ness by two properties: the sparsity of~x and the orthonormal-
ity of Φ. Specifically, any orthonormal matrix Φ preserves the
norms (and hence differences) for sparse vectors: given arbi-
trary two different sparse vectors~x1 and~x2, their mappings
under matrix Φ (i.e., Φ~x1 and Φ~x2) remain distinct. Thus,
when a sparse vector~x∗ that satisfies Φ~x∗ =~y is found, it is
must be equal to the desired~x (otherwise two different vec-
tors~x∗ and~x have the same mapping, which compromises the
property of the orthonormal matrix Φ) [12]. Since~x is already
sparse (§3), we only address whether Φ is orthonormal.
Orthonormal matrix and RIP. Unfortunately, orthonormal-
ity cannot hold in Φ, because an orthonormal matrix is re-
quires to be a square matrix, but the number of rows is smaller
than the number of columns in Φ. Compressive sensing deals
with this issue with a notion of restricted isometry property
(RIP) [10], which serves as an approximation of being fully or-
thonormal. RIP characterizes the extent to which Φ preserves
the norm of sparse signals.

At a high level, for any sparse vector~x, Φ~x is its mapping
under the matrix Φ. If Φ is highly orthonormal, the norm of
Φ~x (denoted by ‖Φ~x‖2) must be close to that of~x (denoted by
‖~x‖2). Therefore, RIP evaluates the difference between ‖~x‖2
and ‖Φ~x‖2. Since Φ should work for an arbitrary sparse vector
~x, RIP is calculated as a sequence of isometry constants {δS}.
Each δS in the sequence is the maximum relative difference
between the norms of Φ~x and~x among all S-sparse signals:

δS = sup{ |‖Φ~x‖2−‖~x‖2 |
‖~x‖2

for any S-Sparse~x} (3)

Benchmark results. We measure the RIP of both classical
sensing matrices (§4.2) and the matrices induced by sketch
algorithms (§4.3). We present RIP as δS, the isometry constant
for S-sparse vectors, where S is the number of actual flows in
each interval. Figure 6 shows that classical sensing matrices
have RIP below 0.3. In contrast, RIP is above 120 in all sketch-
induced matrices. The large RIPs degrade the efficiency of
compressive sensing reconstruction.

6 Common Approach Analysis

We examine common approaches in general sketch design.
Based on their impacts on matrix orthonormality, we catego-
rize the approaches into four classes. For each class, we ana-

Algorithm C1 C2 C3 C4

CU Sketch [25] Conservative
update

Deltoid [19] Multiple Flow
CM instances extraction

ElasticSketch [80] Traffic
splitting

FlowRadar [49] Multiple Bloom Flow
Bloom Filters Filter extraction

NitroSketch [53] Sampling Multiple HeapCS instances

RevSketch [68] Flow
extraction

SeqHash [8] Multiple Flow
CM instances extraction

SketchLearn [37] Multiple Flow
CM instances extraction

SketchVisor [35] Traffic
splitting

UnivMon [54] Multiple HeapCS instances

SeqSketch Fractional Bloom Filter Splitting
update + Controller + Controller

EmbedSketch Fractional Bloom Filter Extraction
update + controller + Controller

Table 1: Common approaches in sketch algorithms.

CBFCM CS DT ES FR RS SH SL SV UM20
24

28

212

RI
P

Original Fractional

2 4 8 16 32 64
# of Instances

23

26

29

RI
P

CBF CM CS

(a) C1: Fractional elements (b) C2: Adding rows

0 20 40 60 80 100
Ratio of Clearing Columns (%)

20

24

28

RI
P

CBF CM CS

DT ES FR RS SH SL SV20

25

210

RI
P

Original
Min-Mat

Max-Mat

(c) C3: Clearing columns (c) C4: Matrix decomposition
Figure 7: Impact of common approaches.

lyze its matrix property and use RIP as the metric to quantify
the effectiveness. Although some approaches have been used
in existing sketch algorithms (see Table 1), we study them
from novel perspectives. First, we target the suitability of
these approaches to compressive sensing, while existing algo-
rithms study them for specific purposes. Second, we quantify
the efficiency of these approaches via matrix analysis, while
previous algorithms address probabilistic error bounds.

6.1 Class 1 (C1): Fractional Elements

Matrix analysis. We observe that elements in sketch-based
sensing matrices are integers, which leads to the norm of
matrix columns above one. However, an orthonormal matrix
requires column vectors with norm one. Thus, the first class
is to employ fractional matrix elements whose values are less
than one, such as to reduce the norm of each column.

Benchmark results. Figure 7(a) evaluates the impact of frac-
tional elements in existing sketch algorithms. For a sketch,
we replace each element with a randomized value 1/

√
t +σ,

where σ is sampled from a Gaussian distribution with its
mean equal to zero. Thus the mean of elements in the ma-
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trix is 1/
√

t. Here, t is the number of counters accessed by
a packet. Thus, the expected norm of each column vector is
one. We see that RIP is decreased by 40% in all cases.

Approaches. In existing algorithms, there are two approaches
producing fractional elements.
• Sampling: Sampling techniques [69, 70] discard some

packets. For each flow, only partial packets contribute to~y.
Thus, the elements in Φ are less than one. NitroSketch [53]
has combined an adaptive sampling in its design.

• Conservative updates: In general, a packet incurs several
updates in a sketch algorithm. Conservative update [25]
preserves only the smallest update and drops the others.
This also leads to smaller elements in Φ because not all
updates are included.

Limitation. However, sampling and conservative updates are
hard to be formulated as matrices. To obtain the exact frac-
tional elements in Φ, it needs to track exact per-flow packet
loss or update drops, which inevitably incurs excessive over-
heads and cancels out the benefit of sketch.

6.2 Class 2 (C2): Adding Rows

Matrix analysis. The second class is to add more rows to the
matrix Φ. Ideally, two columns are orthonormal if and only if
their nonzero elements occur in different positions. This im-
plies that the two flows have no conflicts in all counters. Since
each counter contributes one row in Φ (§4.3), adding rows
means to configure more counters to reduce flow conflicts.
Hence, column vectors become more orthonormal.

Approaches. In addition to simply allocating more counters
to a single sketch, a common approach is to use multiple
instances of sketch structures. For instance, FlowRadar [49]
contains two Bloom Filters; UnivMon [54] employs multiple
CS instances and filters flows for each instance; Deltoid [19]
and SketchLearn [37] maintain multiple CM instances while
each instance is updated based on the bits of flow IDs.

Benchmark results. Figure 7(b) shows RIP with respect to
various number of sketch instances. We consider three com-
monly used basic sketch algorithms: CM, CS, and CBF. We
see that the RIP decreases as the number of instances grows.
With 64 instances, RIP is reduced by nearly 75%.

Limitation. However, the resulting RIP is still much higher
than that of classical sensing matrices (§5). Although we
can further reduce RIP with more instances, adding instances
consumes more memory. It also incurs excessive usage of
computational resources to update multiple instances.

6.3 Class 3 (C3): Clearing Columns

Matrix analysis. The third class is to clear elements of some
columns. Recall that a column indicates the contribution of
an unknown variable (§4.3). Clearing one column means to

exclude a variable, which simplifies the optimization problem
and hence improves accuracy.

Approaches. Identifying columns that can be cleared is equiv-
alent to detecting flow IDs that never occur, such that dis-
carding the flows does not compromise the results. Two ap-
proaches can track flow IDs in existing algorithms.
• Heap: CountMin [20], UnivMon [54] and NitroSketch [53]

use a heap to store flow IDs whose flow values satisfy
specific conditions (e.g., above a pre-defined threshold).

• Bloom Filter: Bloom Filter records Flow IDs compactly
with bit arrays. An example is FlowRadar [49] that uses
Bloom Filter to avoid duplicate flow IDs.

Benchmark results. Figure 7(c) measures how RIP varies as
the ratio of cleared useless columns. Due to the interest of
space, we present three sketches here and put the remaining
results in Appendix. With no columns cleared, RIP is above
120 for all the three sketch algorithms. RIP significantly de-
creases as the number of cleared columns grows. It becomes
6 when all useless columns are cleared.

Limitation. However, tracking all Flow IDs with existing ap-
proaches is bounded by resource restrictions in switches. For
the heap-based approach, per-flow tracking is infeasible due
to the memory usage of heap. For BF, since it only exam-
ines the occurrence of flow IDs, extra resources are needed to
store flow IDs (e.g., XOR arrays in FlowRadar [49]). For the
controller-based approach, it needs careful design to avoid
bandwidth exhaustion.

6.4 Class 4 (C4): Matrix Decomposition

Matrix analysis. The final class decomposes Φ as the sum of
several component matrices. The decomposition distributes
non-zero elements in Φ into different components. Thus, their
conflicts are alleviated and hence each component becomes
more likely to be orthonormal.

Approaches. There are two possible approaches to distribute
flows and hence decompose matrix Φ.
• Traffic splitting: Traffic splitting employs multiple algo-

rithmic parts in the data plane and splits traffic into different
parts. Each part can produce a component matrix individu-
ally. For example, SketchVisor [35] maintains a fast path
and a normal path, and directs traffic into either path based
on real-time workloads. ElasticSketch [80] consists of a
heavy part and a light part: traffic that is evicted from the
heavy part enters the light part.

• Flow extraction: We can also form a component matrix by
extracting flows from the sketch structure. These algorithms
usually embed specific features in the sketch structures for
the extraction. For example, FlowRadar [49] estimates the
number of distinct flows in each counter (i.e., a row in Φ)
and iteratively extracts from the counters with exactly one
flow. Deltoid [19] and SketchLearn [37] extract from rows
with large corresponding flow values.
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Benchmark results. Figure 7(d) compares RIP before and
after the decomposition. We present the component matrices
with the minimum RIP (Min-Mat) and maximum RIP (Max-
Mat). We observe that the orthonormality is significantly
improved in each Min-Mat. For example, the original RIP of
DT is nearly 1000, but it is reduced to 2.92 in Min-Mat.

Limitation. However, Max-Mat still exhibits high RIP in all
algorithms. For some algorithms, the RIP of Max-Mat is close
to that in the original matrix. We find that the decomposed
traffic is limited because it needs extra structures to split traffic
or extract flows. When resources are bounded, limited traffic
can be decomposed.

7 New Algorithms

Motivation. §6 points out that existing algorithms fail to
produce highly orthonormal matrices. The key issue is that
they are not tailored for compressive sensing. On the one hand,
the four classes C1-C4 are not realized efficiently. On the
other hand, they do not collectively combine the approaches
for compressive sensing. Thus, we need new algorithms that
realize and combine the common approaches more efficiently.

Design choices. To better embrace compressive sensing, we
examine each class in §6 to employ appropriate approaches
to combine with compressive sensing.
• C1: As both sampling and conservative updates are hard to

formulate, we realize a novel method of fractional updates.
Specifically, for a packet (k,v), we use an additional hash
function g(·) to change its value from v to v · g(k). Here,
g(·) generates a value with its mean equal to 1√

r where r is
the number of rows in the sketch. Thus, the expected norm
of column vectors is reduced to one.

• C2: We discard C2 because of its excessive resource usage.
• C3: We employ a control-based approach to enhance Bloom

Filter. Specifically, we store flow IDs in the controller. Since
the controller has enough memory, the flow IDs can be
recorded with zero errors. To reduce bandwidth usage, we
employ a Bloom Filter to eliminate duplicate transfers.

• C4: We separate large flows as key-value pairs and small
flows in the sketch with fractional values (referred to as
fractional sketch). It has been proved that such separation
can be realized with limited overheads [35,71,80]. To make
each decomposed component matrix highly orthonormal,
we also leverage the controller to steer the traffic in key-
value pairs and the fractional sketch.
In summary, we maintain three types of components in

the data plane: (1) key-value pairs to track large flows, (2)
fractional-valued sketch to record small flows and (3) a Bloom
Filter. We propose two algorithms that combine them in dif-
ferent manners. The first algorithm SeqSketch arranges the
components sequentially, while the second algorithm Em-
bedSketch embeds the key-value table and Bloom Filter into
the sketch arrays such that key-value pairs can be extracted

Figure 8: Structure of SeqSketch.

Algorithm 1 SeqSketch Data Plane

Input: Packet (k,v)
1: procedure UPDATE(k,v)
2: j = hash(k)
3: if H[ j] is /0 then
4: H[ j]. f = k, H[ j].c = v, and H[ j].d = 0
5: else if H[ j]. f == k then
6: H[ j].c = H[ j].c+ v
7: else
8: H[ j].d = H[ j].d + v
9: if H[ j].d > H[ j].c then

10: Send (H[ j]. f ,H[ j].c) to controller
11: H[ j]. f = k, H[ j].c = v, and H[ j].d = 0
12: else
13: for all row i in FS do
14: Compute j = hi(k)
15: Increment counter (i, j) by gi(k) · v
16: if k /∈ BF then
17: Send k to controller
18: Insert k to BF

from sketch buckets. SeqSketch consumes less memory, while
EmbedSketch needs fewer computational units. Network ad-
ministrators can select the more suitable algorithm based on
their resource budget.

7.1 SeqSketch

Data structure. Figure 8 presents an overview of SeqSketch.
SeqSketch organizes its key-value pairs in a hash table H, and
employs a forwarder to connect the hash table, Bloom Filter
BF and fractional sketch FS. Every packet first enters the
hash table H. Each tuple in H has three fields to identify large
flows: apart from flow ID f , two counters c and d record flow
values belonging and not belonging to f , respectively. The
hash table evicts records of potential small flows based on the
two counters when conflicts occur. The forwarder transfers an
evicted record if it is a new flow, or sends it to the fractional
sketch. It uses the Bloom Filter to record all occurred flows
and examine new flows. The eviction is cheap because it
incurs limited operations for each evicted record. Given the
heavy-tailed distribution of network traffic, the hash table H
absorbs a large portion of traffic, which alleviates the memory
usage of BF and FS. Thus, SeqSketch is memory efficient.
Data plane. Algorithm 1 outlines how SeqSketch processes
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Figure 9: Example of SeqSketch.

a packet. When a packet (k,v) arrives, we first compute its
position in the hash table H (Line 2). If its hashed entry is
empty, a new record is created for this packet (Lines 3-4).
If the entry already exists, there are two cases. First, if the
existing entry has the same ID as the packet, the counter c is
incremented (Lines 5-6). Second, if f and k are different, we
add d by v (Line 8). At the same time, we need to evict the
flow record of f or the packet (k,v) (Lines 9-18). When d is
larger than c, we send the record to the controller (Line 10),
and insert a flow record for k (Line 11). Otherwise, we evict
(k,v) to FS (Line 13-15). In this case, the forwarder queries its
Bloom Filter to examine whether the flow ID appears before.
If it is a new flow, the ID is also forwarded to the controller
(Line 16-18). Note that we increment each counter in FS with
a fractional value instead of v (Lines 14-15).

Example. Figure 9 presents an example with two buckets
in H. H directly inserts the first two packets p1 and p2 (Fig-
ure 9(b)). For the third packet p3, H maps it to H[1] that
already records another flow f2 . To deal with the conflict,
H increments H[1].d. Since H[1].d does not exceed H[1].c,
p3 is delivered to FS and BF . FS updates its counters with
p3, while BF transfers its flow ID to the controller because it
is a new flow (Figure 9(c)). Finally, p4 enters H and is also
hashed to H[1]. Since p4 does not belong to f2, H increments
H[1].d by one. Since H[1].d exceeds H[1].c (Figure 9(d)), we
evict H[1] and insert p4 (Figure 9(e)).

Control plane. We recover flow IDs and flow values by for-
mulating an optimization problem. There are three portions
of traffic: that in the hash table H, that transferred to the con-
troller, and that in FS. Denote flow values in the three portions
by~xH ,~xC and~xS, respectively. Since~xH ,~xC can be obtained
directly, we only need to solve~xS by formulating the per-flow
update of FS as Φ and its counters as~y:

minimize: ‖~xS‖1,

subject to: ~y = Φ~xS
(4)

Algorithm 2 EmbedSketch Data Plane

Input: Packet (k,v)
1: function UPDATEBUCKET(k, v, i, j)
2: Vi, j =Vi, j +gi(k)
3: if fi, j is empty then
4: fi, j = k, ci, j = v, di, j = 0
5: else if fi, j is k then
6: ci, j = ci, j + v
7: else
8: di, j = di, j + v
9: if di, j > ci, j then

10: Send ( fi, j,ci, j) to controller
11: fi, j = k, ci, j = v, di, j = 0
12: else
13: if k /∈ BFi, j then
14: Send k to controller
15: Insert k to BF i, j

16:
17: procedure UPDATE(k,v)
18: for row i = 1,2, ...,r do
19: j = hi(k)
20: UPDATEBUCKET(k, v, i, j)

Figure 10: Structure of EmbedSketch.

7.2 EmbedSketch

Data structure. Figure 10 depicts EmbedSketch. It maintains
a sketch with r rows. Each row i has two hash functions (hi
to select counters and gi to generate fractional values) and
w buckets. A bucket (i, j) in EmbedSketch consists of: (i)
a counter Vi, j, which denotes the total values hashed to this
bucket, (ii) fi, j, which denotes the flow ID of the candidate
for the largest flow in the bucket, (iii) ci, j, which denotes
the aggregated value of f , (iv) di, j, which denotes the total
value of other flows in the bucket, and (v) a Bloom Filter Bi, j
that records flow IDs in this bucket. Essentially, EmbedSketch
distributes monitoring operations in its buckets. This mitigates
per-bucket hash conflicts. Thus, one hash function in each
bucket is sufficient (see §7.4).

Data plane. Algorithm 2 details how EmbedSketch processes
a packet (k,v). For each row i, EmbedSketch computes a
bucket with hi(k) and updates the bucket (Lines 18-20). To
update a bucket (i, j), EmbedSketch first increments Vi, j by
gi(k) · v (Line 2). If the existing candidate fi, j equals to k,
ci, j is also incremented (Lines 5-6). Otherwise, EmbedSketch
increments di, j (Line 8) and determines to evict either fi, j
(Lines 9-11) or k (Lines 13-15). If fi, j is evicted, a record
( fi, j,ci, j) is transferred to the controller (Line 10). At the
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same time, EmbedSketch uses k as the new candidate and
sets ci, j = v and di, j = 0 (Line 11). Otherwise, if k is evicted,
EmbedSketch queries its local Bloom Filter Bi, j (Line 13). If
k is a new ID, EmbedSketch forwards it to the controller and
updates Bi, j to include k (Lines 14-15).

Control plane. We form ~y with all r×w counters of Vi, j in
EmbedSketch. Traffic in Vi, j comprises three portions: (1)
each fi, j contains its value ci, j, (2) per-flow values transferred
to the controller, and the remaining traffic in Vi, j. Thus, we
denote per-flow values in the three portions by~x f ,~xC and~xR,
respectively. Since only~xR is unknown, we build the following
optimization problem:

minimize: ‖~xR‖1,

subject to: ~y = Φ(~x f +~xC +~xR)
(5)

7.3 Parameters

We need to configure the three components: the fractional
sketch (FS), the Bloom Filter (BF), and key-value pairs (KV ).

Fractional sketch. For FS, two rows are sufficient as our
optimization-based recovery does not need many rows to
alleviate hash conflicts. However, compressive sensing theory
requires a minimum amount of counters: C ·S log2(n/S) (c.f.
Equation(13) in [13]), where n is the number of possible
flows, S is the expected number of actual flows, and C is a
small positive number. In practice, we can select a proper C to
make memory usage fits the device. For example, to monitor
around S=100K 2-tuple flows (n = 264), setting C=0.1 leads
to around 472K counters. If we employ 32-bit counters, the
total memory of FS is 1888 KB.

Bloom Filter. The Bloom Filter BF determines the accuracy
of the received flow IDs in the control plane. A false flow ID
indicates 100% relative error for that flow, which seriously
compromises the recovery accuracy. Thus, we need to care-
fully configure BF . The size of BF depends on the expected
number of flows S. According to [18] (c.f. §5.2.5), the false
positive rate of Bloom Filter is (0.6185)m/S where m is the
length of Bloom Filter, if we set the number of hash func-
tions to its optimal value m

S ln2. In our case, a false positive
in Bloom Filter means wrongly clearing a column in Φ. To
achieve our goal of < 1% error probability for flow ID extrac-
tion, we need to bound the false positive rate of the Bloom
Filter below 1%. This requires m= 9.6S. For S = 100 K flows,
this leads to a Bloom Filter with 120 KB. For SeqSketch, we
employ the optimal number of hash functions: 9.6ln2 ≈ 7.
For EmbedSketch, since the Bloom Filter is distributed across
buckets, one hash suffices to achieve low error probability.

Key-value pairs. In EmbedSketch, each bucket maintains
one key-value pair by design. For SeqSketch, it can employ
the same amount for simplicity.
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Figure 11: (Experiment 1) Accuracy.

7.4 Evaluation

Setup. We implement both software version and hardware
version of the two algorithms (see Appendix). We evaluate
them via trace-driven experiments. We use the CAIDA-2018
backbone trace [9] and two data center traces [5]. We present
2-tuple flows and count their packets, while other flow defi-
nitions (e.g., 5-tuple) and statistics have similar results. We
partition each trace into equal-length intervals. Due to the in-
terest of space, we present the results with 2-second intervals,
each of which has around 100 K flows. More results are in
Appendix. We present the average results across all intervals.
Here, we omit the standard deviations because the standard
deviations are negligible. When measuring accuracy (Experi-
ments 1 and 2), we run both update and query operations in a
server with 36 CPU cores (2.6GHz each) and 128 GB memory
to process the traces. When measuring resource overheads
(Experiments 3 to 6), we build a testbed with 16 servers and
a Barefoot Tofino switch [79]. Each server has a 40Gbps NIC
for traffic transfers and a 10Gbps NIC to connect to the con-
troller. We deploy our algorithms in the switch. Each server
replays our traces and evenly sends the traces to others. We
follow §7.3 to configure key-value pairs (KV ), the Bloom
Filter BF , and the fractional sketch FS.

Experiment 1: Accuracy (Figure 11). We compare the ac-
curacy of SeqSketch (Seq) and EmbedSketch (Ebd) with 11
sketch algorithms. Every algorithm has its suggested theo-
retical configuration (see Appendix). However, they fail to
achieve NZE even when we allocate 100 MB memory (§2.2).
Thus, for a fair comparison, each algorithm is allocated with
the same amount of memory as ours for a stress test. In Fig-
ure 11(a) and Figure 11(b), we exclude CBF, CM, and CS
because they cannot extract flow IDs by design. We find that
more than half existing algorithms have nearly zero false pos-
itive rate and false negative rate. However, none of existing
algorithms achieve high accuracy for all flows. Recall §2.2,
even when we allocate more memory (10 MB) and relax the
desired per-flow error to 50%, the ratio of accurate flows in
existing algorithms is less than 85%. In contrast, EmbedS-
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Figure 12: (Experiment 2) Robustness to various memory
configurations.

Name PHV (Bytes) VLIW ALU Stage

ElasticSketch 163 (21.22%) 13 (3.39%) 9 (18.75%) 10 (83.33%)

FlowRadar 134 (21.22%) 11 (2.86%) 15 (31.25%) 10 (83.33%)

SketchLearn 156 (20.31%) 11 (2.86%) 33 (68.75%) 8 (83.33%)

UnivMon 132 (17.19%) 13 (3.39%) 33 (68.75%) 12 (100%)

SeqSketch 151 (19.66%) 12 (3.12%) 13 (27.08%) 8 (66.67%)

EmbedSketch 137 (17.84%) 10 (2.60%) 6 (12.50%) 8 (66.67%)

Table 2: (Experiment 3) Switch resource usage.

ketch bounds the error below 0.1% for more than 99.72% and
SeqSketch covers all flows. The reason is that existing algo-
rithms depend on a large amount of memory to fully resolve
hash conflicts. However, our algorithms recover flow values
by solving an optimization problem based on compressive
sensing, which is not so sensitive to hash conflicts.

Experiment 2: Robustness (Figure 12). We measure the
ratio of flows with an error less than 0.1% in different configu-
rations. To study the accuracy as memory changes, we fix two
components and vary the size of the remaining one. For SeqS-
ketch in Figure 12(a), when FS has 256KB, only 68% flows
reach the accuracy level because the memory is far smaller
than a reasonable size. However, the ratio increases to nearly
100% as the sketch size increases. Figure 12(b) shows that
the accuracy remains stable for different BF configurations.
Even with 32 KB (25% of the expected memory as §7.3),
more than 96% flows remain per-flow error below 0.1%. In
EmbedSketch, since each bucket of FS embeds one KV pair,
we either fix BF and vary FS (Figure 12(c)) or vice versa
(Figure 12(d)). We observe similar trends: the accuracy is low
with 256 KB FS but grows as the size of FS, while remaining
stable for various BF size.

We also find that SeqSketch is more memory efficient than
EmbedSketch. For SeqSketch, 832 KB memory (512 KB FS,
64 KB BF , and 256 KB KV ) is sufficient to achieve near-
zero error. In contrast, EmbedSketch requires around 2.5 MB
memory to reach the same level of accuracy, including at least
512 KB FS, 64 KB BF and 2048 KB KV . Here, the 2048 KB
KV comes from the per-bucket key-value pairs. Recall that
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Figure 13: (Experiment 4) Bandwidth usage.
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Figure 14: (Experiment 5) Recovery time.

each key-value pair occupies 16 bytes, which is 4× of a FS
counter. Thus, KV consumes as 4× memory as FS. The root
cause for different memory usage is that in SeqSketch, there
are no duplicate flow IDs in the hash table, while a flow may
be tracked multiple times in EmbedSketch.
Experiment 3: Resource usage in Tofino (Table 2). We
compare SeqSketch and EmbedSketch with four state-of-the-
art sketch algorithms. We consider four types of resources:
stages, ALUs, and VLIW are used for updating sketch val-
ues, while PHV carries data across stages. We find that our
algorithms consume fewer stages, ALUs, and VLIW than FR,
SL, and UM. The reason is that the three algorithms need to
update multiple instances (Table 1), while the components
in our algorithms require only simple operations. SeqSketch
incurs more resource usage than ES because it needs to up-
date additional Bloom Filter and transfer flow records to the
controller for evicted entries. EmbedSketch requires fewer re-
sources than others because updating local structures is much
simpler (e.g., fewer hash functions for BF).
Experiment 4: Bandwidth usage (Figure 13). We measure
the ratio of incurred traffic to the traffic in a time interval.
The incurred traffic compromises two parts: the evicted flow
records and flow IDs during per-packet updates, and the trans-
fer of the sketch at the end of each interval. We see that
achieving NZE monitoring incurs less than 0.7% additional
bandwidth consumption. Note that existing sketch algorithms
only transfer the sketch structures. Although our algorithms
additionally transfer flow IDs, the overall bandwidth usage re-
mains limited for two reasons. First, the sketch structures are
quite small. Second, we only send evicted flow records that
aggregate a considerable number of packets to the controller.
When an individual packet is evicted, it will be absorbed by
FS. Further, BF avoids duplicate transfers of flow IDs.
Experiment 5: Recovery time (Figure14). We measure the
recovery time for different number of flows. Currently, we use
a single thread for recovery. The time is around 60 seconds in
the worst case, which is much worse than sketch algorithms.
We can optimize it by assigning recovery operations in differ-
ent CPU cores. Recall that the time interval containing 100 K
flows is around 2.5 seconds. Our 36-core server is sufficient
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Figure 15: (Experiment 6) RIP.

to handle all recovery operations. Further, we can speed up
with recent distributed machine learning architectures such
as TensorFlow. Since solving optimization problem is not our
focus, we leave it in the future work.

Experiment 6: RIP (Figure 15). We further examine the
RIP of the two algorithms in Figure 15(a) and Figure 15(b),
respectively. We observe that RIP remains below 3 in all cases,
which is much smaller than that in existing algorithms (§6).
The results reveal that SeqSketch and EmbedSketch produce
highly orthonormal matrices, which lead to high accuracy
when applying compressive sensing reconstruction.

More results. In Appendix, we also present the throughput
in software (Experiment 7). We also present the complete
accuracy results under different configurations.

7.5 Discussion

Correctness. The correctness of both SeqSketch and Em-
bedSketch can be derived from compressive sensing. Since
we recover per-flow values with standard compressive sens-
ing, the recovered results are close to the true values given
the orthonormal matrices produced by the two algorithms
(Experiment 3). We leave the formal proof in our future work.

Comparison to existing algorithms. Both the sequential de-
sign and embedding design have been used in prior algorithms.
For example, ElasticSketch [80] evicts records from a hash
table to a sketch; MV-Sketch [77] embeds heavy flows in
buckets. Our algorithms are different in four aspects. First,
our recovery is based on an optimization framework of com-
pressive sensing. Second, we employ a fractional sketch that
increments each counter by a fractional value. Third, we main-
tain a Bloom Filer to track all flow IDs. Finally, we leverage
the controller to reduce the overheads in the data plane. With
these design choices, our algorithms achieve near-zero errors.

8 Related Work

Measurement algorithms. Hash tables [1, 2, 52, 59] achieve
zero errors but incur excessive resource usage. Some approx-
imate techniques reduce memory usage by addressing only
heavy hitters [4,25,33,71]. Sampling techniques [14,41,69,70,
74] selectively discard a portion of traffic to improve resource
efficiency. Sketch algorithms [20, 36, 37, 49, 53, 54, 68, 80, 85]
employ a compact structure in which multiple flows share a

counter. These approximate algorithms usually provide theo-
retical guarantees to bound the incurred errors. However, the
bounds are too loose to apply to all flows, leading to poor
accuracy in practice (see §2).

Measurement systems. OpenSketch [82], SCREAM [58]
and SketchVisor [35] enhance sketch algorithms in differ-
ent aspects. Some systems boost performance with TCAM
[40, 57, 60]. PacketHistory [32] and Planck [65] mirror traffic
to the controller. EverFlow [87] and dShark [81] filter out
uninterested traffic with pre-defined rules. mOS [38] and Con-
fluo [42] address monitoring at edges. Studies on query lan-
guages [29, 31, 61, 73, 78] empower more fine-grained expres-
sions to tune measurement tasks. TPP [39], MOZART [52],
and SwitchPointer [76] combine software and hardware de-
vices to provide both flexibility and programmability for net-
work measurement. Different from these works, our work
addresses the algorithmic design for flow monitoring. It is
complementary to above system studies.

Compressive sensing for network measurement. Counter-
Braids [55] demonstrates that sketch and compressive sensing
are thematically related, but does not actually apply com-
pressive sensing. [48] applies Least Linear Square method
to reconstruct flow values from CountMin Sketch, but does
not consider other sketch techniques. [21] shows that sketch
algorithms can be formulated as a special kind of compressive
sensing. [16, 44, 83] leverage compressive sensing to restore
missing values in traffic matrices. [7] uses compressive sens-
ing for tomography. SketchVisor [35] merges its two paths
with compressive sensing. In contrast, this paper leverages
compressive sensing for NZE monitoring.

9 Conclusion

This paper revisits the theoretical bounds provided by sketch
algorithms. We observe that the bounds in existing algorithms
are too loose to achieve high accuracy for all flows. We ad-
dress this problem with compressive sensing. We formulate
sketch algorithms as matrices and study their suitability to
compressive sensing. The results guide us to design two new
algorithms accordingly. The efficiency of the two algorithms
demonstrates the power of our methodology. We expect that
more algorithms can be designed in the future.
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Figure 16: Matrix formulation of CS and CBF.

Appendix A: Sketch-based Sensing

Examples. Figure 16 presents another two examples of the
sensing matrices for CS and CBF. As §4.3, we also consider
four flows. Figure 16(a) shows a CountSketch (CS). CS has
the same structure as CM. However, a packet (k,v) incre-
ments its hashed counter in row t by gt(k) · v, where gt(k) is
another function that maps a flow ID to {−1,1}. Thus, Φi,k is
either 1 or −1 if flow k hits counter i. Figure 16(b) presents
a Bloom Filter. Note that the original Bloom Filter is not
a linear mapping, because it maintains an array of bits and
performs bitwise OR operations. We extend it to a Counting
Bloom Filter (CBF) that replaces the bit array with a counter
array. Each counter is updated by v for a packet (k,v) hashed
to it. Thus, we set Φi,k = 1 if flow k hashes to counter i.

Appendix B: Implementation

Software version. The software version integrates Open-
VSwitch (OVS) [62]. We target two implementations of OVS:
one resides in the kernel space, and the other bypasses the
kernel via DPDK [23]. In each implementation, we intercept
packets in the forwarding module. We put the packet headers
in a region of shared memory. A dedicated thread reads the
shared memory and updates the sketch (either SeqSketch or
EmbedSketch) accordingly.
Hardware version. We implement the hardware version in
P4 [63] and target PISA [6] switches. We place the data struc-
tures in switch registers, and invoke stateful ALUs to update
register values for each packet. However, the limited mem-
ory access model of PISA raises two challenges. The first
challenge is that each memory access can only manipulate
at most 64-bit variables, but in our algorithms, we need to
update more than 64 bits of data each time. Second, PISA par-
titions hardware resources into several stages, each of which
is associated with its own ALUs and registers. An ALU can
only access the registers belonging to its same stage.

To this end, we tailor SeqSketch and EmbedSketch to fit
them into PISA switches. For the first challenge, we sepa-
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Figure 17: Throughput in software.

Table 3: Compressive sensing results with different memory.
Matrix Recovery Memory (KB) (<1e-1) (<5e-2) (<1e-2) (<1e-3)

BM L1 100 2.01% 1.67% 1.52% 1.52%

BM L1 200 100% 100% 100% 100%

BM OMP 100 1.94% 1.62% 1.47% 1.46%

BM OMP 200 100% 100% 100% 100%

FM L1 100 26.25% 26.25% 26.25% 26.25%

FM L1 200 52.50% 52.50% 52.50% 52.50%

FM L1 300 78.76% 78.76% 78.76% 78.76%

FM L1 400 100% 100% 100% 100%

FM OMP 100 14.81% 14.23% 14.06% 14.04%

FM OMP 200 100% 100% 100% 100%

GM L1 100 1.94% 1.59% 1.44% 1.44%

GM L1 200 100% 100% 100% 100%

GM OMP 100 1.90% 1.60% 1.46% 1.46%

GM OMP 200 100% 100% 100% 100%

IM L1 100 1.98% 1.62% 1.48% 1.48%

IM L1 200 100% 100% 100% 100%

IM OMP 100 1.98% 1.62% 1.48% 1.48%

IM OMP 200 100% 100% 100% 100%

rate different types of variables across stages, such that the
size of accessed variables in each stage does not exceed the
64-bit limit. For the second challenge, we introduce a few
intermediate variables to break the inter-dependencies among
variables. More precisely, we store only f and c in the same
stage, but replace the variable d with a new variable d′. The
new variable d′ resides in a stage before f and c. It counts
all incoming flows (i.e. d′ = c+d) and records its value in a
metadata field such that it can be shared across stages. The
later stage (i.e., that actually maintains f and c) reads d′ from
the metadata, and determines to perform an eviction operation
based on whether d′− c > c.

Appendix C: more experiments

Experiment 7: Throughput in software switches (Fig-
ure17). We measure the throughput of the two algorithms.

We observe that both algorithms keep stable throughput. The
throughput of EmbedSketch is higher than that of SeqSketch
because its local structures are simpler (see Experiment 3).
Complete results. Table 3 provides the results of classical
compressive sensing under different memory settings. Table 4
shows the theoretical configurations of state-of-the-art algo-
rithms with 1% threshold, 1% relative error, and 5% error
probability. Table 5, Table 6 Table 7, and Table 8 show the
complete results of SeqSketch and EmbedSketch.

Table 4: Theoretical configurations of exiting algorithms.
Algorithm CU Sketch Deltoid ElasticSketch FlowRadar NitroSketch

Memory (KB) 312 32500 4438 2115 32672

Algorithm RevSketch SeqHash SketchLearn SketchVisor UnivMon

Memory (KB) 58594 32500 32500 2123 32672

Table 5: SeqSketch under different epoch lengths.
Epoch Length (s) 1s 2s 5s 10s 25s

Total Memory (KB) 672 1344 2016 3360 6720

KV Memory (KB) 128 256 384 640 1280

BF Memory (KB) 32 64 96 160 320

FS Memory (KB) 512 1024 1536 2560 5120

(<1e-1) 98.80% 99.51% 98.55% 98.13% 99.95%

(<5e-2) 98.79% 99.50% 98.51% 98.07% 99.95%

(<1e-2) 98.78% 99.50% 98.48% 98.04% 99.95%

(<1e-3) 98.77% 99.49% 98.48% 98.03% 99.95%

Precision (%) 100 100 100 100 100

Recall (%) 99 99 99 99 99

Bandwidth Overhead 0.33% 0.29% 0.20% 0.17% 0.13%

Table 6: EmbedSketch under different epoch lengths.
Epoch Length (s) 1s 2s 5s 10s 25s

Total Memory (KB) 2592 5184 7776 12960 25920

BF Memory (KB) 32 64 96 160 320

FS Memory (KB) 2560 5120 7680 12800 25600

(<1e-1) 98.62% 99.34% 98.46% 98.39% 98.31%

(<5e-2) 98.55% 99.30% 98.38% 98.30% 98.19%

(<1e-2) 98.51% 99.26% 98.32% 98.23% 98.13%

(<1e-3) 98.50% 99.25% 98.31% 98.22% 98.13%

Precision (%) 100 100 100 100 100

Recall (%) 99 99 99 99 99

Bandwidth Overhead 0.81% 0.79% 0.50% 0.41% 0.33%
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Table 7: SeqSketch configurations.
Total Memory (KB) KV Memory (KB) BF Memory (KB) FS Memory (KB) (<1e-1) (<5e-2) (<1e-2) (<1e-3) Precision (%) Recall (%) Bandwidth Overhead

544 256 32 256 37.87% 37.28% 36.81% 36.70% 100 71 0.0854%

800 256 32 512 81.46% 80.80% 80.20% 80.11% 100 92 0.115%

576 256 64 256 43.08% 42.15% 41.39% 41.24% 100 77 0.0854%

832 256 64 512 96.78% 96.66% 96.55% 96.53% 100 99 0.115%

1088 256 64 768 98.28% 98.21% 98.17% 98.16% 100 99 0.144%

1344 256 64 1024 98.89% 98.86% 98.84% 98.84% 100 99 0.173%

1600 256 64 1280 99.04% 99.01% 98.99% 98.99% 100 99 0.202%

640 256 128 256 59.61% 58.19% 57.06% 56.87% 100 87 0.0854%

896 256 128 512 99.63% 99.61% 99.60% 99.60% 100 100 0.115%

1152 256 128 768 99.83% 99.82% 99.82% 99.82% 100 100 0.144%

1408 256 128 1024 99.90% 99.90% 99.90% 99.90% 100 100 0.173%

1664 256 128 1280 99.90% 99.90% 99.90% 99.90% 100 100 0.202%

768 256 256 256 60.12% 58.72% 57.59% 57.41% 100 87 0.0854%

1024 256 256 512 99.97% 99.97% 99.97% 99.97% 100 100 0.115%

1280 256 256 768 99.98% 99.98% 99.98% 99.98% 100 100 0.144%

1536 256 256 1024 100% 100% 100% 100% 100 100 0.173%

1024 256 512 256 60.15% 58.75% 57.62% 57.44% 100 87 0.0854%

1280 256 512 512 100% 100% 100% 100% 100 100 0.115%

1280 256 768 256 60.15% 58.75% 57.62% 57.44% 100 87 0.0854%

1536 256 768 512 100% 100% 100% 100% 100 100 0.115%

1536 256 1024 256 60.15% 58.75% 57.62% 57.44% 100 87 0.0854%

1792 256 1024 512 100% 100% 100% 100% 100 100 0.115%

800 512 32 256 54.65% 53.99% 53.44% 53.34% 100 81 0.109%

1056 512 32 512 93.04% 92.84% 92.68% 92.66% 100 97 0.138%

1312 512 32 768 95.01% 94.87% 94.76% 94.74% 100 98 0.167%

832 512 64 256 67.98% 67.25% 66.69% 66.60% 100 88 0.109%

1088 512 64 512 98.92% 98.89% 98.87% 98.86% 100 100 0.138%

1344 512 64 768 99.38% 99.37% 99.35% 99.35% 100 100 0.167%

896 512 128 256 80.63% 79.98% 79.48% 79.39% 100 94 0.109%

1152 512 128 512 99.88% 99.88% 99.88% 99.88% 100 100 0.138%

1408 512 128 768 99.94% 99.94% 99.94% 99.94% 100 100 0.167%

1024 512 256 256 88.02% 87.58% 87.24% 87.19% 100 96 0.109%

1280 512 256 512 99.98% 99.98% 99.98% 99.98% 100 100 0.138%

1536 512 256 768 99.99% 99.99% 99.99% 99.99% 100 100 0.167%

1792 512 256 1024 100% 100% 100% 100% 100 100 0.196%

1280 512 512 256 100% 100% 100% 100% 100 100 0.109%

1536 512 768 256 100% 100% 100% 100% 100 100 0.109%

1792 512 1024 256 100% 100% 100% 100% 100 100 0.109%

1280 768 256 256 99.91% 99.91% 99.91% 99.91% 100 100 0.105%

1536 768 256 512 100% 100% 100% 100% 100 100 0.134%

1536 768 512 256 100% 100% 100% 100% 100 100 0.105%

1792 768 768 256 100% 100% 100% 100% 100 100 0.105%

2048 768 1024 256 100% 100% 100% 100% 100 100 0.105%

1536 1024 256 256 99.97% 99.97% 99.97% 99.97% 100 100 0.16%

1792 1024 256 512 99.99% 99.99% 99.99% 99.99% 100 100 0.189%

2048 1024 256 768 99.99% 99.99% 99.99% 99.99% 100 100 0.218%

2304 1024 256 1024 100% 100% 100% 100% 100 100 0.247

1792 1024 512 256 100% 100% 100% 100% 100 100 0.16%

2048 1024 768 256 100% 100% 100% 100% 100 100 0.16%

2304 1024 1024 256 100% 100% 100% 100% 100 100 0.16%

2048 1280 256 512 100% 100% 100% 100% 100 100 0.216%

2304 1280 512 512 100% 100% 100% 100% 100 100 0.216%
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Table 8: EmbedSketch configurations.
Total Memory (KB) BF Memory (KB) FS Memory (KB) (<1e-1) (<5e-2) (<1e-2) (<1e-3) Precision (%) Recall (%) Bandwidth Overhead

1568 32 1536 72.26% 71.70% 71.21% 71.13% 100 87 0.205%

2080 32 2048 85.62% 85.12% 84.73% 84.67% 100 94 0.259%

2592 32 2560 91.87% 91.63% 91.40% 91.35% 100 97 0.315%

4128 32 4096 97.81% 97.72% 97.64% 97.63% 100 99 0.484%

1600 64 1536 82.09% 81.34% 80.73% 80.62% 100 94 0.21%

2112 64 2048 90.61% 90.37% 90.13% 90.09% 100 96 0.264%

2624 64 2560 95.76% 95.62% 95.51% 95.49% 100 98 0.318%

4160 64 4096 98.14% 98.07% 98.00% 97.99% 100 99 0.485%

1664 128 1536 88.48% 87.80% 87.17% 87.06% 100 98 0.214%

2176 128 2048 94.95% 94.75% 94.53% 94.50% 100 98 0.266%

2688 128 2560 98.51% 98.47% 98.43% 98.41% 100 99 0.32%

4224 128 4096 99.82% 99.81% 99.81% 99.80% 100 00 0.487%

1792 256 1536 89.02% 88.35% 87.70% 87.59% 100 98 0.214%

2048 256 1792 93.83% 93.45% 93.06% 93.00% 100 99 0.24%

2304 256 2048 97.47% 97.31% 97.12% 97.10% 100 100 0.267%

2560 256 2304 99.16% 99.09% 99.03% 99.02% 100 100 0.294%

2816 256 2560 99.75% 99.74% 99.72% 99.72% 100 100 0.321%

3072 256 2816 99.97% 99.97% 99.97% 99.97% 100 100 0.348%

4352 256 4096 100% 100% 100% 100% 100 100 0.487%

2048 512 1536 88.92% 88.24% 87.59% 87.48% 100 98 0.214%

2304 512 1792 93.78% 93.40% 93.02% 92.95% 100 100 0.240%

2560 512 2048 97.54% 97.38% 97.19% 97.17% 100 100 0.267%

2816 512 2304 99.10% 99.04% 98.97% 98.96% 100 100 0.294%

3072 512 2560 99.84% 99.83% 99.82% 99.82% 100 100 0.321%

3328 512 2816 100% 99.99% 99.99% 99.99% 100 100 0.348%

4068 512 4096 100% 100% 100% 100% 100 100 0.488%

2304 768 1536 88.92% 88.24% 87.59% 87.48% 100 98 0.213%

2560 768 1792 93.78% 93.39% 93.01% 92.95% 100 99 0.24%

2816 768 2048 97.54% 97.38% 97.19% 97.17% 100 100 0.267%

3072 768 2304 99.10% 99.03% 98.96% 98.96% 100 100 0.294%

3328 768 2560 99.84% 99.83% 99.82% 99.82% 100 100 0.321%

3584 768 2816 100% 100% 100% 100% 100 100 0.348%

2560 1024 1536 88.91% 88.24% 87.58% 87.47% 100 98 0.214%

2816 1024 1792 93.78% 93.40% 93.02% 92.95% 100 99 0.24%

3072 1024 2048 97.53% 97.37% 97.18% 97.16% 100 100 0.267%

3328 1024 2304 99.10% 99.03% 98.96% 98.96% 100 100 0.294%

3584 1024 2560 99.84% 99.83% 99.82% 99.82% 100 100 0.321%

3840 1024 2816 100% 100% 100% 100% 100 100 0.348%

2816 1280 1536 88.92% 88.24% 87.58% 87.47% 100 98 0.214%

3072 1280 1792 93.78% 93.40% 93.02% 92.95% 100 100 0.24%

3328 1280 2048 97.53% 97.37% 97.18% 97.16% 100 100 0.267%

3584 1280 2304 99.10% 99.03% 98.96% 98.96% 100 100 0.294%

3840 1280 2560 99.84% 99.83% 99.82% 99.82% 100 100 0.321%

4096 1280 2816 100% 100% 100% 100% 100 100 0.348%

3072 1536 1536 88.92% 88.24% 87.58% 87.47% 100 98 0.214%

3328 1536 1792 93.78% 93.40% 93.02% 92.95% 100 100 0.24%

3584 1536 2048 97.53% 97.37% 97.18% 97.16% 100 100 0.267%

3840 1536 2304 99.10% 99.03% 98.96% 98.96% 100 100 0.294%

4096 1536 2560 99.84% 99.83% 99.82% 99.82% 100 100 0.321%

4352 1536 2816 100% 100% 100% 100% 100 100 0.348%
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