
FarReach: Write-back Caching in Programmable Switches
Siyuan Sheng1, Huancheng Puyang1, Qun Huang2, Lu Tang3, and Patrick P. C. Lee1

1The Chinese University of Hong Kong, 2Peking University, 3Xiamen University
Source code: http://adslab.cse.cuhk.edu.hk/software/farreach/ 

Challenges

Ø Goal: Design a fast, available, and reliable in-switch write-back caching framework 
to improve key-value store performance under skewed write-intensive workloads

Evaluation

FarReach’s Architecture

Ø Skewed write-intensive workloads become dominant in recent production key-value stores
Ø Write requests suffer from long round-trip times (RTTs) and server-side imbalanced load
Ø Programmable switches can cache hot records to reduce RTTs and balance server-side load

Motivation

Ø In-switch write-back caching is subject to three challenges as follows:

Overview

Ø 1. Performance challenge: Controller is required for cache management due to switch limitations, yet 
with I/O performance degradation due to slow control-plane processing

Ø 2. Availability challenge: Keeping latest records available to clients incurs synchronization overhead
Ø 3. Reliability challenge: Cached records not updated to servers can be lost after switch failures

Programmable
Switch

Client
Server

Switch OS

In-switch
Cache

ServerCache Misses

Cache Hits

Controller
Cache Management

Key-value
Stores

Control
Plane

Data
Plane

Server

…Client…

Client

Design

Ø Architecture: Data plane accesses or updates cached records for 
traversed requests with cache hits, while control plane manages 
in-switch cache (including cache admission and eviction)

Client

Programmable Switch

Controller

Server①

②

③

Count-Min 
Sketch

CacheWrite R

Send R

Switch OS
Subsequent

writes

Programmable Switch

Controller
①

②
Cache

Admit R 
“outdated”

Switch OS

Write R 
“latest”

Read R 
“latest”③

Conservative
reads

③
Client Server

Programmable Switch

Controller

①
②

③
Send R

Load R

Switch OS

Evict R

Read R
Write R Cache

R à (“to-be-
evicted”, seq) Client Server

Programmable Switch

Controller

②

③Send 
original R

Trigger 
snapshot 

generation

Write R

①
② Load 

records

Switch OS

CacheClient

Non-blocking Cache Admission

Available Cache Eviction

Crash-consistent Snapshot Generation

(a) Before cache admission (b) After cache admission

/RDG $ % & ' )�

���

�

���

�

7K
SW
��0

2
36

�

1R&DFKH 1HW&DFKH )DU5HDFK

�� �� �� ���
��RI�6LPXODWHG�6HUYHUV

�
�

��
��
��

7K
SW
��0

2
36

�

1R&DFKH 1HW&DFKH )DU5HDFK

Throughput Analysis Scalability Analysis

Ø Prototype FarReach on a two-pipeline Tofino switch
Ø Throughput analysis: Increase throughput by up to 91% 

and 84% (workload A w/ 50% reads and 50% writes)
Ø Scalability analysis: Achieve up to 6.6× throughput 

gain under 128 simulated servers

Ø Available cache eviction (for a to-be-evicted record R): 
• For writes for R, switch marks R as “outdated” and forwards writes to server
• For reads for R, switch returns R to clients if R is “latest”, or forwards reads to the 

server if R is “outdated”, to keep the latest version of R always available

Ø Non-blocking cache admission (for a hot record R):
• Before admitting R, switch forwards subsequent writes 

for R to the server for non-blocking processing
• After admitting R, switch conservatively forwards reads 

to server until writes or read responses mark R as “latest”

Ø Crash-consistent snapshot generation (with two phases):
• In the first phase, controller notifies the switch to trigger snapshot generation 
• In the second phase, switch sends each original cached record (say, R) before 

the first write to controller; after loading all cached records, controller reverts 
the overwritten records with the original ones for crash consistency


