
A General Delta-based In-band Network Telemetry
Framework with Extremely Low Bandwidth Overhead

SHENG Siyuan

Supervised by Prof. Patrick P. C. Lee

The Chinese University of Hong Kong

April 2021

1

In-band Network Telemetry (INT)

ØSource pushes control information and device-internal states

ØTransit pushes states according to control information

ØSink extracts INT information and reports an event

2

INT framework

Limitations of INT

ØSignificant bandwidth overhead
• Linearly grow with the length of forwarding path
• Reduce effective bandwidth for network applications
• Increase likelihood of IP-level fragmentation

ØExample
• 5-node fat-tree topology in data center
• Trace device ID, ingress port, and egress port, of 4B each
• 12B per-node states and 8B INT control information
• 68B in total à at least 4.53% of 1,500B MTU in Ethernet

3

Existing Studies

ØSampling-based methods
• Embed INT information to only a subset of sampled packets
• Reduce bandwidth overhead yet with slow convergence
• Cannot retrieve INT information unless collecting sufficient packets

ØOther methods
• Designed for specific telemetry tasks

ØAll existing methods suffer from low generality
• Cannot support all families of common applications

4

Our Contributions

ØDeltaINT, a general INT framework
• Two variations: DeltaINT-O and DeltaINT-E
• Extremely low bandwidth overhead
• High generality and convergence

ØTheoretical analysis on bandwidth mitigation guarantees

ØSoftware simulation for various applications
• For example, reducing up to 93% bandwidth cost in gray failure detection

ØP4-based hardware implementation

ØOpen-source DeltaINT prototype
5

Four Families of Applications

ØPer-packet-per-node monitoring
• Collect per-node states for each packet (e.g., fine-grained monitoring and

gray failure detection)

ØPer-packet aggregation
• Aggregate per-node states for each packet (e.g., congestion control)

ØStatic per-flow aggregation
• Collect static per-node states for each flow (e.g., path tracing)

ØDynamic per-flow aggregation
• Aggregate per-node states for each flow (e.g., latency measurement)

6

Our Solution

ØKey observation
• Delta, the change between current state and embedded state
• Delta is often negligible at most time in typical applications

• For example, relatively stable hop latency and static device IDs

ØMotivating example

7

Per-node Architecture in DeltaINT

ØPer-node architecture
• Calculate the delta between current states and embedded states
• Only if the delta exceeds a threshold, we insert current states into a

packet and update the embedded state

ØHow to maintain embedded states efficiently in data plane?

8

DeltaINT-O

DeltaINT-E

Sketching in DeltaINT

ØSketch-based technique
• Store approximate information with limited memory and computations
• Track embedded states in the data plane with limited resources

ØPer-node sketch data structure
• Each bucket stores a flowkey and the embedded states
• Each entry of a packet includes a bitmap and the states being embedded

9

Primitives in DeltaINT

ØFour primitives to form DeltaINT workflow
• StateLoad

• Hash flowkey and load embedded states from the first bucket matching flowkey
• DeltaCalc

• Calculate the delta and compare with the predefined threshold
• StateUpdate

• Update flowkey and relevant embedded states in the hashed buckets
• MetadataInsert

• Insert a bitmap and the states with non-negligible deltas into the packet
• Encode negligible deltas into the packet by Huffman coding if DeltaINT-E is used

ØFit DeltaINT into applications with slight changes to primitives

10

Delta Encoding in DeltaINT-E

ØAssumption on probability distribution of delta values
• Delta = 0 with the largest probability
• Each non-zero delta <= 𝜙 with an equal remaining probability

ØBased on Huffman coding
• A single bit ‘0’ to represent zero delta
• One bit ‘1’ followed by ⌈log!(2𝜙)⌉ bits to represent each non-zero delta
• For example, bit ‘0’, bits ‘10’, and bits ‘11’ for deltas of 0, -1, and 1 if 𝜙 = 1
• Note that if 𝜙 = 0, DeltaINT-E omits negligible deltas as in DeltaINT-O

11

Update Example of DeltaINT-O

12

ØReceive the first packet of 𝑥!

ØReceive the first packet of 𝑥"

ØReceive the second packet of 𝑥!

ØReceive the second packet of 𝑥"

Update Example of DeltaINT-E

13

ØReceive the first packet of 𝑥!

ØReceive the first packet of 𝑥"

ØReceive the second packet of 𝑥!

ØReceive the second packet of 𝑥"
8 12

1 0 8
Packet

Curstates

#! #! 8 10
#! 8 10

#!#" 6 15
2

6 17
0 0

Packet

Curstates

"! "! 6 15
"" 8 10

"!"! 6 15
2

Evaluation

ØMethodology
• For software simulation, we use both bmv2 and NS3
• For hardware implementation, we compile P4 in Barefoot Tofino switch
• For sketch in the data plane, we keep 1MB memory and 1 hash function

ØExperiments
• Gray failure detection
• Congestion control
• Path tracing
• Latency measurement
• Fine-grained monitoring
• Hardware resource usage

14

Gray Failure Detection

ØTracked states
• 8-bit device ID, 8-bit ingress port, 8-bit egress port, and 32-bit latency

ØBandwidth usage
• DeltaINT-O (8.1 bits) mitigates 93% bandwidth usage of INT-Path (112 bits)

• DeltaINT-E (16.8 bits) also significantly reduces INT bandwidth overhead
• Reason: DeltaINT only embeds critical states with non-negligible deltas

15(a) Different epoch lengths (b) Different thresholds

� ��� ����
(SRFK�/HQJWK��V�

�
��
��
��

���

$Y
HU
DJ
H�
%L
W ,17�SDWK 'HOWD,17�2 'HOWD,17�(

� � �� ��
'HOWD�7KUHVKROG��QV�

�
��
��
��

���

$Y
HU
DJ
H�
%L
W ,17�SDWK 'HOWD,17�2 'HOWD,17�(

Congestion Control

ØTracked state: 8-bit link utilization

ØBandwidth usage
• DeltaINT-O (≈1 bit) and DeltaINT-E (2~4 bits) are better than PINT (8 bits)
• Reason

• DeltaINT-O only needs a 1-bit bitmap for negligible delta
• DeltaINT-E needs delta encoding yet with limited extra bandwidth overhead

16
(a) Web search workload (b) Hadoop workload

� � � �
'HOWD�7KUHVKROG

�
�
�
�
�

$Y
HU
DJ
H�
%L
W 3,17 'HOWD,17�2 'HOWD,17�(

� � � �
'HOWD�7KUHVKROG

�
�
�
�
�

$Y
HU
DJ
H�
%L
W 3,17 'HOWD,17�2 'HOWD,17�(

Path Tracing

ØTracked state: 8-bit device ID (threshold = 0)

ØBandwidth usage
• DeltaINT-O (≈1 bit) is better than PINT (8 bits)
• Reason: DeltaINT-O only needs a 1-bit bitmap for non-first packets of

each flow due to static device ID with negligible delta

17

(a) Kentucky Datalink (b) Fat Tree

� � �� �� �� �� �� �� �� �� ��
3DWK�/HQJWK��+RS�

�
�
�
�
�

$Y
HU
DJ
H�
%L
W

3,17
'HOWD,17�2

� � � �
3DWK�/HQJWK��+RS�

�
�
�
�
�

$Y
HU
DJ
H�
%L
W

3,17
'HOWD,17�2

Path Tracing

ØConvergence
• Average number: DeltaINT-O (1) vs. PINT (120)
• Tail (99th percentile) number: DeltaINT-O (1) vs. PINT (350)
• Reason

• DeltaINT-O only embeds per-node device ID in the first packet of each flow
• PINT needs sufficient sampled packets to retrieve per-flow device IDs

18

� � �� �� �� �� �� �� �� �� ��
3DWK�/HQJWK��+RS�

�
��
��
��

���

$Y
HU
DJ
H�
1X

P
EH
U

3,17
'HOWD,17�2

� � �� �� �� �� �� �� �� �� ��
3DWK�/HQJWK��+RS�

�
���
���
���
���

7D
LO�
1X

P
EH
U 3,17

'HOWD,17�2

Latency Measurement

ØTracked state: 8-bit latency

ØBandwidth usage
• (a) DeltaINT-O (3 bits), DeltaINT-E (5.4 bits), and PINT (8.9 bits)
• (b) DeltaINT-O (4 bits), DeltaINT-E (6.3 bits), and PINT (8.9 bits)
• Reason: DeltaINT only embeds critical latency with non-negligible delta

19

(a) Web search workload (b) Hadoop workload

� � � �
'HOWD�7KUHVKROG��QV�

�
�
�
�
�

��

$Y
HU
DJ
H�
%L
W 3,17 'HOWD,17�2 'HOWD,17�(

� � � �
'HOWD�7KUHVKROG��QV�

�
�
�
�
�

��

$Y
HU
DJ
H�
%L
W 3,17 'HOWD,17�2 'HOWD,17�(

Fine-grained monitoring

ØTracked state: 32-bit latency

ØBandwidth usage in web search workload
• DeltaINT-O decreases from 11.2 bits to 2.1 bits
• DeltaINT-E decreases from 12.8 bits to 7.7 bits, and increases to 8.7 bits
• Original INT uses 57.8 bits

20

(a) Web search workload (b) Hadoop workload

� � �� �� ��� ����
'HOWD�7KUHVKROG��QV�

�
��
��
��
��

$Y
HU
DJ
H�
%L
W ,17 'HOWD,17�2 'HOWD,17�(

� � �� �� ��� ����
'HOWD�7KUHVKROG��QV�

�
��
��
��
��

$Y
HU
DJ
H�
%L
W ,17 'HOWD,17�2 'HOWD,17�(

Fine-grained monitoring

ØMeasurement accuracy
• Average relative error between reported latency and actual latency
• Results

• Both original INT and DeltaINT-E can achieve full accuracy
• DeltaINT-O suffers from large average relative error

• Reason: DeltaINT-O omits negligible deltas while DeltaINT-E encodes them

21

(a) Web search workload (b) Hadoop workload

� � �� �� ��� ����
'HOWD�7KUHVKROG��QV�

�
��
��
��
��

$5
(�
��

�

� � � � � �� � � � � �

,17 'HOWD,17�2 'HOWD,17�(

� � �� �� ��� ����
'HOWD�7KUHVKROG��QV�

�
��
��
��
��
��

$5
(�
��

�

� � � � � �� � � � � �

,17 'HOWD,17�2 'HOWD,17�(

Hardware Resource Usage
ØHardware resource usage

• Percentages in brackets are fractions of total resource usage
• DO and DE incur slightly more SRAM, stages, and stateful ALUs

• DO and DE need to track embedded states in the data plane
• INT incurs more PHV sizes and actions

• INT has larger bandwidth overhead and hence more information to process and transmit

22

Conclusion

ØDeltaINT, a novel INT framework to achieve extremely low
bandwidth overhead
• Generality
• Convergence

ØEvaluation on various applications
• Both variations incur less bandwidth usage than state-of-the-art methods

ØSource code:
• http://adslab.cse.cuhk.edu.hk/software/deltaint

23

Thank You!
Q & A

24

