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In-band Network Telemetry (INT)

» Source pushes control information and device-internal states
» Transit pushes states according to control information

» Sink extracts INT information and reports an event
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Limitations of INT

» Significant bandwidth overhead
 Linearly grow with the length of forwarding path
« Reduce effective bandwidth for network applications
 Increase likelihood of IP-level fragmentation

» Example
« 5-node fat-tree topology in data center
« Trace device ID, ingress port, and egress port, of 4B each

« 12B per-node states and 8B INT control information
* 68B in total = at least 4.53% of 1,500B MTU in Ethernet



Existing Studies

» Sampling-based methods

« Embed INT information to only a subset of sampled packets
* Reduce bandwidth overhead yet with slow convergence
« Cannot retrieve INT information unless collecting sufficient packets

» Other methods

» Designed for specific telemetry tasks

» All existing methods suffer from low generality
« Cannot support all families of common applications



Our Contributions

» DeltalNT, a general INT framework

« Two variations: DeltalNT-O and DeltalNT-E
« Extremely low bandwidth overhead
« High generality and convergence

» Theoretical analysis on bandwidth mitigation guarantees

» Software simulation for various applications
* For example, reducing up to 93% bandwidth cost in gray failure detection

» P4-based hardware implementation

» Open-source DeltalNT prototype



Four Families of Applications

» Per-packet-per-node monitoring

« Collect per-node states for each packet (e.g., fine-grained monitoring and
gray failure detection)

» Per-packet aggregation
« Aggregate per-node states for each packet (e.g., congestion control)

» Static per-flow aggregation
» Collect static per-node states for each flow (e.g., path tracing)

» Dynamic per-flow aggregation
« Aggregate per-node states for each flow (e.g., latency measurement)



Our Solution

» Key observation

« Delta, the change between current state and embedded state

* Delta is often negligible at most time in typical applications
« For example, relatively stable hop latency and static device IDs

» Motivating example
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Per-node Architecture in DeltalNT

» Per-node architecture
e Calculate the delta between current states and embedded states

« Only if the delta exceeds a threshold, we insert current states into a
packet and update the embedded state
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» How to maintain embedded states efficiently in data plane?



Sketching in DeltalNT

» Sketch-based technique

« Store approximate information with limited memory and computations
* Track embedded states in the data plane with limited resources

» Per-node sketch data structure
« Each bucket stores a flowkey and the embedded states
« Each entry of a packet includes a bitmap and the states being embedded
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Primitives in DeltalNT

» Four primitives to form DeltaINT workflow
« StatelLoad

« Hash flowkey and load embedded states from the first bucket matching flowkey

 DeltaCalc

« Calculate the delta and compare with the predefined threshold

« StateUpdate

» Update flowkey and relevant embedded states in the hashed buckets

* Metadatalnsert
 Insert a bitmap and the states with non-negligible deltas into the packet
« Encode negligible deltas into the packet by Huffman coding if DeltalNT-E is used

» Fit DeltalNT into applications with slight changes to primitives
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Delta Encoding in DeltalNT-E

» Assumption on probability distribution of delta values

« Delta = 0 with the largest probability
« Each non-zero delta <= ¢ with an equal remaining probability

» Based on Huffman coding
« A single bit ‘0O’ to represent zero delta
* One bit ‘1’ followed by [log,(2¢)] bits to represent each non-zero delta
* For example, bit ‘0’, bits “10’, and bits ‘11’ for deltas of 0, -1, and 1 if ¢ = 1
* Note that if ¢ = 0, DeltalNT-E omits negligible deltas as in DeltaINT-O
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Update Example of DeltalNT-O

» Receive the first packet of x;
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» Receive the first packet of x,
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» Receive the second packet of x;
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» Receive the second packet of x,
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Update Example of DeltalNT-E

» Receive the first packet of x;

Packet|X1| |x4| 5 |10
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» Receive the first packet of x,
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» Receive the second packet of x;
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» Receive the second packet of x,
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Evaluation

» Methodology

* For software simulation, we use both bmv2 and NS3
* For hardware implementation, we compile P4 in Barefoot Tofino switch
* For sketch in the data plane, we keep 1TMB memory and 1 hash function

» Experiments
« Gray failure detection
« Congestion control
« Path tracing
e Latency measurement
* Fine-grained monitoring
 Hardware resource usage



Gray Failure Detection

» Tracked states
 8-bit device ID, 8-bit ingress port, 8-bit egress port, and 32-bit latency

» Bandwidth usage

* DeltalNT-O (8.1 bits) mitigates 93% bandwidth usage of INT-Path (112 bits)
« DeltalNT-E (16.8 bits) also significantly reduces INT bandwidth overhead

 Reason: DeltalNT only embeds critical states with non-negligible deltas
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Congestion Control

» Tracked state: 8-bit link utilization

» Bandwidth usage

« DeltalNT-O (=1 bit) and DeltalNT-E (2~4 bits) are better than PINT (8 bits)

* Reason
» DeltaINT-O only needs a 1-bit bitmap for negligible delta
« DeltalNT-E needs delta encoding yet with limited extra bandwidth overhead
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Path Tracing

» Tracked state: 8-bit device ID (threshold = 0)

» Bandwidth usage
« DeltalNT-O (=1 bit) is better than PINT (8 bits)

« Reason: DeltalNT-O only needs a 1-bit bitmap for non-first packets of
each flow due to static device ID with negligible delta
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Path Tracing

» Convergence

* Average number: DeltaINT-O (1) vs. PINT (120)
 Tail (99t percentile) number: DeltaINT-O (1) vs. PINT (350)

« Reason

* DeltalNT-O only embeds per-node device ID in the first packet of each flow
* PINT needs sufficient sampled packets to retrieve per-flow device IDs
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Latency Measurement

» Tracked state: 8-bit latency

» Bandwidth usage
* (a) DeltalNT-O (3 bits), DeltalNT-E (5.4 bits), and PINT (8.9 bits)
* (b) DeltalNT-O (4 bits), DeltaINT-E (6.3 bits), and PINT (8.9 bits)
 Reason: DeltalNT only embeds critical latency with non-negligible delta
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Fine-grained monitoring

» Tracked state: 32-bit latency

» Bandwidth usage in web search workload
* DeltaINT-O decreases from 11.2 bits to 2.1 bits
* DeltaINT-E decreases from 12.8 bits to 7.7 bits, and increases to 8.7 bits
« Original INT uses 57.8 bits
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Fine-grained monitoring

» Measurement accuracy

« Average relative error between reported latency and actual latency

 Results

« Both original INT and DeltalNT-E can achieve full accuracy
» DeltalNT-O suffers from large average relative error

« Reason: DeltalNT-O omits negligible deltas while DeltalNT-E encodes them
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Hardware Resource Usage

» Hardware resource usage

« Percentages in brackets are fractions of total resource usage

« DO and DE incur slightly more SRAM, stages, and stateful ALUs
DO and DE need to track embedded states in the data plane

* INT incurs more PHYV sizes and actions
* INT has larger bandwidth overhead and hence more information to process and transmit

| | SRAM (KB) | No. stages | No. actions | No. ALUs | PHV size (bytes) |

| DO-F1 | 336KB (2.19%) | 3(25%) | 11(il) | 4(®8.33%) | 110(14%) |
| DO-F2 | 288KB (1.88%) | 5(42%) | 10(il) | 3(6.25%) | 96 (13%) |
| DO-F3 | 304KB (1.98%) | 2(16%) | 5il) | 1(2.08%) |  91(12%) |
| DO-F4 | 336KB (2.19%) | 3(25%) | 7il) |2@.17%) | 101 (13%) |
| DE-F1 | 384KB (2.50%) | 4(33%) | 12(il) | 4(833%) | 116(15%) |
| |
| |
| |
| |

| DE-F2 | 320KB (2.08%) | 5 (42%) 11 (i) | 3(6.25%) | 96 (13%)
| DE-F3 | 304KB (1.98%) | 2 (16%) 5mil) | 1(2.08%) | 91 (12%)
| DE-F4 | 368KB (2.39%) | 3 (25%) 8(nil) | 2(4.17%) |  115(15%)

| INT | 176KB (1.15%) | 4(33%) | 42(mil) | 0(0%) | 231(30%)
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Conclusion

» DeltalNT, a novel INT framework to achieve extremely low
bandwidth overhead
« Generality
« Convergence

» Evaluation on various applications
« Both variations incur less bandwidth usage than state-of-the-art methods

» Source code:
 http://adslab.cse.cuhk.edu.hk/software/deltaint
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