A General Delta-based In-band Network Telemetry
Framework with Extremely Low Bandwidth Overhead

SHENG Siyuan
Supervised by Prof. Patrick P. C. Lee
The Chinese University of Hong Kong

April 2021

In-band Network Telemetry (INT)

» Source pushes control information and device-internal states
» Transit pushes states according to control information

» Sink extracts INT information and reports an event

Monitoring System
Control Plane !

Data Plane i Event
Source | Packet | Transit | Packet o Sink
Node Node Node

INT framework

Limitations of INT

» Significant bandwidth overhead
 Linearly grow with the length of forwarding path
« Reduce effective bandwidth for network applications
 Increase likelihood of IP-level fragmentation

» Example
« 5-node fat-tree topology in data center
« Trace device ID, ingress port, and egress port, of 4B each

« 12B per-node states and 8B INT control information
* 68B in total = at least 4.53% of 1,500B MTU in Ethernet

Existing Studies

» Sampling-based methods

« Embed INT information to only a subset of sampled packets
* Reduce bandwidth overhead yet with slow convergence
« Cannot retrieve INT information unless collecting sufficient packets

» Other methods

» Designed for specific telemetry tasks

» All existing methods suffer from low generality
« Cannot support all families of common applications

Our Contributions

» DeltalNT, a general INT framework

« Two variations: DeltalNT-O and DeltalNT-E
« Extremely low bandwidth overhead
« High generality and convergence

» Theoretical analysis on bandwidth mitigation guarantees

» Software simulation for various applications
* For example, reducing up to 93% bandwidth cost in gray failure detection

» P4-based hardware implementation

» Open-source DeltalNT prototype

Four Families of Applications

» Per-packet-per-node monitoring

« Collect per-node states for each packet (e.g., fine-grained monitoring and
gray failure detection)

» Per-packet aggregation
« Aggregate per-node states for each packet (e.g., congestion control)

» Static per-flow aggregation
» Collect static per-node states for each flow (e.g., path tracing)

» Dynamic per-flow aggregation
« Aggregate per-node states for each flow (e.g., latency measurement)

Our Solution

» Key observation

« Delta, the change between current state and embedded state

* Delta is often negligible at most time in typical applications
« For example, relatively stable hop latency and static device IDs

» Motivating example

Original| P3 || P2 || P1 |™»|Node|=p| P3| 10 || p2 |11 || P1 |10

DeltaINT-O| P3 || P2 || P1 |=»|Node|=p| P3 || P2 || P1|10
DeltaINT-E| P3 || P2 || P1 |=p|Node|=)

Per-node Architecture in DeltalNT

» Per-node architecture
e Calculate the delta between current states and embedded states

« Only if the delta exceeds a threshold, we insert current states into a
packet and update the embedded state

Packet _H| | —j
nsert =
Deltal NT-O rrent e > Delta Belts > TI:reshoId N Omit
Embedded States [| Calculation
i Y |Update
Packet _]_{ j
Current States Del y |Insert
DeltaINT'E > Delta- elta > Threshold N_| Encode
Embedded States [| Calculation J Delta
T Y |Update

» How to maintain embedded states efficiently in data plane?

Sketching in DeltalNT

» Sketch-based technique

« Store approximate information with limited memory and computations
* Track embedded states in the data plane with limited resources

» Per-node sketch data structure
« Each bucket stores a flowkey and the embedded states
« Each entry of a packet includes a bitmap and the states being embedded

Packetf<_ |- - - |Bitmap|States
— :
/A N
d rows / i Y Flowkey |Embstates

w buckets

Primitives in DeltalNT

» Four primitives to form DeltaINT workflow
« StatelLoad

« Hash flowkey and load embedded states from the first bucket matching flowkey

 DeltaCalc

« Calculate the delta and compare with the predefined threshold

« StateUpdate

» Update flowkey and relevant embedded states in the hashed buckets

* Metadatalnsert
 Insert a bitmap and the states with non-negligible deltas into the packet
« Encode negligible deltas into the packet by Huffman coding if DeltalNT-E is used

» Fit DeltalNT into applications with slight changes to primitives

10

Delta Encoding in DeltalNT-E

» Assumption on probability distribution of delta values

« Delta = 0 with the largest probability
« Each non-zero delta <= ¢ with an equal remaining probability

» Based on Huffman coding
« A single bit ‘0O’ to represent zero delta
* One bit ‘1’ followed by [log,(2¢)] bits to represent each non-zero delta
* For example, bit ‘0’, bits “10’, and bits ‘11’ for deltas of 0, -1, and 1 if ¢ = 1
* Note that if ¢ = 0, DeltalNT-E omits negligible deltas as in DeltaINT-O

11

Update Example of DeltalNT-O

» Receive the first packet of x;

Packet|X1| |x4| 5 |10

=
Curstates| 5 (|10 X1] 5|10

» Receive the first packet of x,

Packet |X2 . le 6 115
Curstates| 6 [|15 X2l 6 |15|X4 5 |10

» Receive the second packet of x;

Packet|Xs| |x,| 8 |10

= =) (x4{1(0] 8
Curstates| 8 (|12 Xyl 6 [15]X4] 8 |10

» Receive the second packet of x,

Packet|X2| |x,| 6 |15

=
Curstates| 6 ||17 X2l 6 [15]|X4) 8 |10

Update Example of DeltalNT-E

» Receive the first packet of x;

Packet|X1| |x4| 5 |10

= m(x4[1|1] 5 |10
Curstates| 5 (|10 X1] 5|10

» Receive the first packet of x,

Packet [X2 . le 6 |15
Curstates| 6 [|15 X2l 6 |15|X4 5 |10

» Receive the second packet of x;

Packet X1] |x4| 8 |10

=
Curstates| 8 ||12 X7l 6 [15(%4] 8 |10

» Receive the second packet of x,

Packet (X2l x5 6 [15

Y
Curstates| 6 ||17 Xy 6 |15]x4| 8 |10

Evaluation

» Methodology

* For software simulation, we use both bmv2 and NS3
* For hardware implementation, we compile P4 in Barefoot Tofino switch
* For sketch in the data plane, we keep 1TMB memory and 1 hash function

» Experiments
« Gray failure detection
« Congestion control
« Path tracing
e Latency measurement
* Fine-grained monitoring
 Hardware resource usage

Gray Failure Detection

» Tracked states
 8-bit device ID, 8-bit ingress port, 8-bit egress port, and 32-bit latency

» Bandwidth usage

* DeltalNT-O (8.1 bits) mitigates 93% bandwidth usage of INT-Path (112 bits)
« DeltalNT-E (16.8 bits) also significantly reduces INT bandwidth overhead

 Reason: DeltalNT only embeds critical states with non-negligible deltas

Il INT-path B DeltalNT-O B DeltalNT-E Bl INT-path B DeltalNT-O B DeltalNT-E

+J +J

= 120 m 120
© 60 © 60
]]

< o < o

1 0.1 0.01 1 4 16 04
Epoch Length (s) Delta Threshold (ns)

(a) Different epoch lengths (b) Different thresholds 1s

Congestion Control

» Tracked state: 8-bit link utilization

» Bandwidth usage

« DeltalNT-O (=1 bit) and DeltalNT-E (2~4 bits) are better than PINT (8 bits)

* Reason
» DeltaINT-O only needs a 1-bit bitmap for negligible delta
« DeltalNT-E needs delta encoding yet with limited extra bandwidth overhead

.a:o' g Bl PINT B8 DeltaINT-O M DeltalNT-E .a:o* g Bl PINT B8 DeltalNT-O M DeltalNT-E
o o
@6 @6
C4 C4
22 22
< <
0™ 2 4 8 0™ 2 4 8
Delta Threshold Delta Threshold

(a) Web search workload (b) Hadoop workload

Path Tracing

» Tracked state: 8-bit device ID (threshold = 0)

» Bandwidth usage
« DeltalNT-O (=1 bit) is better than PINT (8 bits)

« Reason: DeltalNT-O only needs a 1-bit bitmap for non-first packets of
each flow due to static device ID with negligible delta

F G| stttk ek ok i s IR PP o rranrnannaaias P serrncannnanas e

(a8 m

QO e PINT QO 4 PINT

© 4{--- DeltalNT-O © 41 -4 DeltaINT-O

Q Q

> 2 |

L | mremmsmns s e e e e < | k-—----- he—————— h——————- A
00 6 12 18 24 30 36 42 48 54 60 073 3 4 5

Path Length (Hop) Path Length (Hop)

(a) Kentucky Datalink (b) Fat Tree

17

Path Tracing

» Convergence

* Average number: DeltaINT-O (1) vs. PINT (120)
 Tail (99t percentile) number: DeltaINT-O (1) vs. PINT (350)

« Reason

* DeltalNT-O only embeds per-node device ID in the first packet of each flow
* PINT needs sufficient sampled packets to retrieve per-flow device IDs

[
N
o

»

% PINT .****.*ﬁ
1-=-- DeltaINT-O

O
(@)
*
*,
n;{*
F

e
.*u*‘******

e VK

w O
o O
%
3

Average Number
%

00 "6 12 18 24 30 36 42 48 54 60
Path Length (Hop)

400
)

<9300
S

)

> 200

E 100
0

-+ PINT '
1 -=- DeltalNT-O U
¥k X -
Poorow ik s
- AR LR ¥
x rxLE T R
| ***w*.‘** *®
"*****f**
e

0 6 12 18 24 30 36 42 48 54 60
Path Length (Hop)

18

Latency Measurement

» Tracked state: 8-bit latency

» Bandwidth usage
* (a) DeltalNT-O (3 bits), DeltalNT-E (5.4 bits), and PINT (8.9 bits)
* (b) DeltalNT-O (4 bits), DeltaINT-E (6.3 bits), and PINT (8.9 bits)
 Reason: DeltalNT only embeds critical latency with non-negligible delta

+ 10/ M PINT m DeltaINT-O M DeltaINT-E + 10{ M PINT m DeltaINT-O M DeltaINT-E
e 5
O 6 O 6
© 4 © 4
)])]
> 5 > 5
I 2 x 2
0™ 2 4 8 0™ 2 4 8
Delta Threshold (ns) Delta Threshold (ns)

(a) Web search workload (b) Hadoop workload

19

Fine-grained monitoring

» Tracked state: 32-bit latency

» Bandwidth usage in web search workload
* DeltaINT-O decreases from 11.2 bits to 2.1 bits
* DeltaINT-E decreases from 12.8 bits to 7.7 bits, and increases to 8.7 bits
« Original INT uses 57.8 bits

60| INT B DeltalNT-O M DeltalNT-E 60 | M INT B DeltalNT-O M DeltalNT-E

+ +
a8} (a8}
O 45] O 45/
(@) (@)
© 30 © 30
15 15
< <

0 0

4 16 64 256 1024 1 4 16 64 256 1024
Delta Threshold (Delta Threshold (ns)

(a) Web search workload (b) Hadoop workload

20

Fine-grained monitoring

» Measurement accuracy

« Average relative error between reported latency and actual latency

 Results

« Both original INT and DeltalNT-E can achieve full accuracy
» DeltalNT-O suffers from large average relative error

« Reason: DeltalNT-O omits negligible deltas while DeltalNT-E encodes them

40

3\0/30-

a'd

<C 10;
O‘

Il INT B DeltalNT-O M DeltalNT-E

Og0O OFO OO OFO OO0 OFO

1 4 16 64 256 1024
Delta Threshold (ns)

(a) Web search workload

50

—~ 40"
(@]
S 30
L

< 10|

O‘

Bl INT B DeltalNT-O M DeltalNT-E

0.0 OFpO0O OFO o] [o] [o] [

1 4 16 64 256 1024
Delta Threshold (ns)

(b) Hadoop workload

Hardware Resource Usage

» Hardware resource usage

« Percentages in brackets are fractions of total resource usage

« DO and DE incur slightly more SRAM, stages, and stateful ALUs
DO and DE need to track embedded states in the data plane

* INT incurs more PHYV sizes and actions
* INT has larger bandwidth overhead and hence more information to process and transmit

| | SRAM (KB) | No. stages | No. actions | No. ALUs | PHV size (bytes) |

DO-F1	336KB (2.19%)	3(25%)	11(il)	4(®8.33%)	110(14%)
DO-F2	288KB (1.88%)	5(42%)	10(il)	3(6.25%)	96 (13%)
DO-F3	304KB (1.98%)	2(16%)	5il)	1(2.08%)	91(12%)
DO-F4	336KB (2.19%)	3(25%)	7il)	2@.17%)	101 (13%)
DE-F1	384KB (2.50%)	4(33%)	12(il)	4(833%)	116(15%)

| DE-F2 | 320KB (2.08%) | 5 (42%) 11 (i) | 3(6.25%) | 96 (13%)
| DE-F3 | 304KB (1.98%) | 2 (16%) 5mil) | 1(2.08%) | 91 (12%)
| DE-F4 | 368KB (2.39%) | 3 (25%) 8(nil) | 2(4.17%) | 115(15%)

| INT | 176KB (1.15%) | 4(33%) | 42(mil) | 0(0%) | 231(30%)

22

Conclusion

» DeltalNT, a novel INT framework to achieve extremely low
bandwidth overhead
« Generality
« Convergence

» Evaluation on various applications
« Both variations incur less bandwidth usage than state-of-the-art methods

» Source code:
 http://adslab.cse.cuhk.edu.hk/software/deltaint

23

Thank You!
Q& A

