
DeltaINT: Toward General In-band Network 
Telemetry with Extremely Low Bandwidth Overhead

Siyuan Sheng1,3, Qun Huang2, and Patrick P. C. Lee3, 
1University of Chinese Academy and Sciences

2Peking University
3The Chinese University of Hong Kong

1



In-band Network Telemetry (INT)

ØSource pushes control information and device-internal states 

ØTransit pushes states according to control information

ØSink extracts INT information and reports an event

2

INT framework



Limitations of INT

ØSignificant bandwidth overhead
• Linearly grow with the length of forwarding path
• Reduce effective bandwidth for network applications
• Increase likelihood of IP-level fragmentation

ØExample
• 5-node fat-tree topology in data center
• Trace device ID, ingress port, and egress port, of 4B each
• 12B per-node states and 8B INT control information
• 68B in total à at least 4.53% of 1,500B MTU in Ethernet

3



Existing Studies

ØSampling-based methods
• Embed INT information to only a subset of sampled packets
• Reduce bandwidth overhead yet with slow convergence
• Cannot retrieve INT information unless collecting sufficient packets

ØOther methods
• Designed for specific telemetry tasks

ØAll existing methods suffer from low generality
• Cannot support all families of common applications

4



Our Contributions

ØDeltaINT, a general INT framework
• Extremely low bandwidth overhead
• High generality and convergence

ØTheoretical analysis on bandwidth mitigation guarantees

ØSoftware simulation for various applications
• For example, reducing up to 93% bandwidth cost in gray failure detection

ØP4-based hardware implementation

ØOpen-source DeltaINT prototype

5



Four Families of Applications

ØPer-packet-per-node monitoring
• Collect per-node states for each packet (e.g., gray failure detection)

ØPer-packet aggregation
• Aggregate per-node states for each packet (e.g., congestion control)

ØStatic per-flow aggregation
• Collect static per-node states for each flow (e.g., path tracing)

ØDynamic per-flow aggregation
• Aggregate per-node states for each flow (e.g., latency measurement)

6



Our Solution

ØKey observation
• Delta, the change between current state and embedded state
• Delta is often negligible at most time in typical applications

• For example, relatively stable hop latency and static device IDs

ØMotivating example

7



Per-node Architecture in DeltaINT

ØPer-node architecture
• Calculate the delta between current states and embedded states
• Only if the delta exceeds a threshold, we insert current states into a 

packet and update the embedded state

ØHow to maintain embedded states efficiently in data plane?

8



Sketching in DeltaINT

ØSketch-based technique
• Store approximate information with limited memory and computations
• Track embedded states in the data plane with limited resources

ØPer-node sketch data structure
• Each bucket stores a flowkey and the embedded states
• Each entry of a packet includes a bitmap and the states being embedded

9



Primitives in DeltaINT

ØFour primitives to form DeltaINT workflow
• StateLoad

• Hash flowkey and load embedded states from the first bucket matching flowkey
• DeltaCalc

• Calculate the delta and compare with the predefined threshold
• StateUpdate

• Update flowkey and relevant embedded states in the hashed buckets
• MetadataInsert

• Insert a bitmap and the states with non-negligible deltas into the packet

ØFit DeltaINT into applications with slight changes to primitives

10



Update Example

11

ØReceive the first packet of 𝑥!

ØReceive the first packet of 𝑥"

ØReceive the second packet of 𝑥!

ØReceive the second packet of 𝑥"



Evaluation

ØMethodology
• For software simulation, we use both bmv2 and NS3
• For hardware implementation, we compile P4 in Barefoot Tofino switch
• For sketch in the data plane, we keep 1MB memory and 1 hash function

ØExperiments
• Gray failure detection
• Congestion control
• Path tracing
• Latency measurement
• Hardware resource usage

12



Gray Failure Detection

ØTracked states
• 8-bit device ID, 8-bit ingress port, 8-bit egress port, and 32-bit latency

ØBandwidth usage
• DeltaINT (8.1 bits) mitigates 93% bandwidth usage of INT-Path (112 bits)
• Reason: DeltaINT only embeds critical states with non-negligible deltas

13

(a) Different epoch lengths (b) Different thresholds



Congestion Control

ØTracked state: 8-bit link utilization

ØBandwidth usage
• DeltaINT (≈1 bit) is better than PINT (8 bits)
• Reason: DeltaINT only needs a 1-bit bitmap for negligible delta such that 

controller can be aware of the stable link utilization

14

(a) Web search workload (b) Hadoop workload



Path Tracing

ØTracked state: 8-bit device ID

ØBandwidth usage
• DeltaINT (≈1 bit) is better than PINT (8 bits)
• Reason: DeltaINT only needs a 1-bit bitmap for non-first packets of each 

flow due to static device ID with negligible delta

15

(a) Kentucky Datalink (b) Fat Tree



Path Tracing

ØConvergence
• Average number of required packets: DeltaINT (1) vs. PINT (120)
• Tail (99th percentile) number of required packets: DeltaINT (1) vs. PINT (350)
• Reason

• DeltaINT only embeds per-node device ID in the first packet of each flow
• PINT needs sufficient sampled packets to retrieve per-flow device IDs

16



Latency Measurement

ØTracked state: 8-bit latency

ØBandwidth usage
• Web search workload: DeltaINT (2.6 bits) is better than PINT (10.3 bits)
• Hadoop workload: DeltaINT (2.4 bits) is better than PINT (9.9 bits)
• Reason: DeltaINT only embeds critical latency with non-negligible delta

17

(a) Web search workload (b) Hadoop workload



Hardware Resource Usage
ØHardware resource usage

• Percentages in brackets are fractions of total resource usage
• DeltaINT incurs slightly more SRAM, stages, and stateful ALUs

• DeltaINT needs to track embedded states in the data plane
• INT incurs more PHV sizes and actions

• INT has larger bandwidth overhead and hence more information to process and transmit

18



Conclusion

ØDeltaINT, a novel INT framework to achieve extremely low 
bandwidth overhead
• Generality
• Convergence

ØEvaluation on various applications
• DeltaINT incurs less bandwidth usage than state-of-the-art methods

ØSource code:
• http://adslab.cse.cuhk.edu.hk/software/deltaint

19



Thank You!
Q & A

20


